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Conditional Risk and Performance Evaluation: Volatility Timing,

Overconditioning, and New Estimates of Momentum Alphas

Abstract

Unconditional alpha estimates are biased when conditional beta covaries with the market risk

premium (“market-timing”) or volatility (“volatility-timing”). Whereas prior literature focuses on

market-timing, we demonstrate that volatility-timing has a plausible impact 2 to 10 times larger.

Moreover, we identify a novel and potentially substantial bias (“overconditioning”) that can oc-

cur any time an empiricist estimates conditional risk using information unavailable to investors

— for example proxying with contemporaneous realized beta when asset returns are nonlinear.

To correct market- and volatility-timing biases without overconditioning, we show that incorpo-

rating realized betas into instrumental variables estimators is effective. Empirically, instrumenta-

tion reduces momentum alphas by 20-40% relative to unconditional, while overconditioned alphas

are up to 2.5 times larger. Volatility-timing inflates unconditional momentum performance be-

cause the formation-period market return (i) positively predicts holding-period beta (Grundy and

Martin, 2001) and (ii) negatively predicts holding-period market volatility (French, Schwert, and

Stambaugh, 1987), inducing negative covariation between conditional momentum beta and market

volatility.



1. Introduction

Under the conditional CAPM, risk equals the conditional exposure to market returns given the in-

formation available to investors. As is well known, time-variation in risk can impact unconditional

estimates of investment strategy performance (Jensen, 1968; Dybvig and Ross, 1985) and asset

pricing tests (Jagannathan and Wang, 1996). We call the conditioning problems studied in prior

literature underconditioning because — with the notable exception of Jagannathan and Korajczyk

(1986) discussed below — the empiricist is assumed to work with a subset of investor information,

as in the canonical study of Hansen and Richard (1987). To empirically address undercondition-

ing, Shanken (1990) and others allow estimated loadings to depend on lagged data observable to

investors, such as the dividend yield.1

Empiricists are not restricted, however, to using lagged data known to be in the investor in-

formation set. For example, an alternative approach directly estimates conditional factor loadings

using “realized betas” estimated from short-window regressions simultaneous with or subsequent

to the returns to be risk-adjusted (e.g., Chan, 1988; Grundy and Martin, 2001, “GM”; Lewellen

and Nagel, 2006, “LN”). Using a realized beta to risk-adjust has a natural appeal, and may appear

to be fully justified by the theoretical linear relationship between conditional risk and expected

return.2 With daily and higher-frequency data increasingly available, we anticipate growing use of

realized betas for performance measurement and asset pricing tests.

In this paper, we identify a novel source of alpha bias that may occur any time an empiricist uses

a conditional risk proxy not entirely contained in the investor information set. This potential em-

pirical problem is the complement of underconditioning, and we call it overconditioning. While the

concept is general and we discuss other examples, we focus on the overconditioning bias generated

by using contemporaneous realized beta as a proxy for conditional beta. Note that any empirical

realized beta estimate cannot be fully anticipated by investors.3 The estimation error, or “noise”,

can be substantial in short windows and can impact alpha even under the optimistic assumption
1Other studies using lagged instruments for alpha estimation include Avramov and Chordia (2006), Bollerslev,

Engle, and Wooldridge (1988), Campbell (1987), Cochrane (1996), Duffee (2005), Ferson and Harvey (1991, 1993,
1999), Ferson, Kandel, and Stambaugh (1987), Ferson and Schadt (1996), Harvey (1989), Lettau and Ludvigson
(2001b), Petkova and Zhang (2005), Santos and Veronesi (2006), Wang (2003), and the textbook of Cochrane (2001).

2GM proxy for month τ momentum betas using loadings estimated in the holding period τ to τ + 5, and explain
“the relevant risk to an investor... is the strategy’s factor exposure during the investment window.” (p. 43) LN state,
“Our methodology... does not require any conditioning information. As long as betas are relatively stable within a
month or quarter, simple CAPM regressions estimated over a short window — using no conditioning variables — provide
direct estimates of assets’ conditional alphas.” (p. 291) Ang, Chen, and Xing (2006) similarly explain, “The CAPM
predicts an increasing relationship between realized average returns and realized factor loadings... More generally,
a multifactor model implies that we should observe patterns between average returns and sensitivities to different
sources of risk over the same time period used to compute the average returns and the factor sensitivities.” (p. 1201)

3 In ideal settings more restrictive than needed for a conditional CAPM, local quadratic variations and covariations
are observable (e.g., Foster and Nelson, 1996), but microstructure effects remain important empirically.
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that it has mean zero. We show that the overconditioning bias generated when using a realized beta

is tied to nonlinearity in the relation between asset and factor returns.4 Intuitively, if an asset payoff

is concave (convex) in market returns, the noise in realized beta negatively (positively) correlates

with market return surprises, biasing alpha.

Theoretically, payoff nonlinearities can and should occur for many reasons. In managed portfo-

lios, financial option holdings induce convex or concave payoffs. More pertinent to our study, stock

returns can be decomposed into real and financial options (Brennan and Schwartz, 1985; McDonald

and Siegel, 1985, 1986; Black and Scholes, 1973), which produce nonlinearities. Behavioral biases

might also create nonlinearities, for example if past returns or other characteristics cause a stock

to respond differently to positive versus negative systematic news, due to a disposition effect or

biased self-attribution (Grinblatt and Han, 2005; Daniel, Hirshleifer, and Subrahmanyam, 1998).

In our paper, it is immaterial why nonlinearities occur, but any reasonable theoretical prior should

strongly favor the existence of nonlinearities in many stock returns and style portfolios.5

Empirically, abundant evidence of nonlinearities is provided by Ang and Chen (2002), Ang,

Chen, and Xing (2006, “ACX”), Hong, Tu, and Zhou (2007), and other authors. These studies

show that many individual stocks and style portfolios covary differently with negative and positive

market surprises.6 For example, ACX sort days within a year according to whether the market

return is below or above the average, and calculate down- and up-betas for each group. For the

highest quintile of stocks, this beta asymmetry is larger than one. The point of our paper is not

to explain these asymmetries, or, following ACX, to determine whether large down betas lead to

higher returns. Instead, we seek to understand the implications of nonlinearities for performance

measurement under the conditional CAPM, where there is no risk premium for beta asymmetry,

yet nonlinearity determines the alpha bias from overconditioning with realized beta.

To be clear, many pricing models imply a linear correspondence between expected asset and

factor returns, but the realized return relation may generally be nonlinear. For example, under

quadratic preferences the CAPM holds for arbitrary return specifications. Similarly, while early

APT formulations assume a strict factor structure, extensions are compatible with nonlinearities

for an arbitrary number of assets provided these average out in random large portfolios.7 Payoff
4A payoff nonlinearity occurs when, conditional on the contemporaneous factor return, the relation between the

expected return on an asset and the realized factor return is nonlinear. In a single-factor setting if one projects an
asset return onto the factor and the residuals are correlated with any function of the factor, then payoffs are nonlinear.

5 In randomly formed portfolios the convexities in some stocks will tend to cancel the concavities in others with
increasing aggregation. Nonlinearities may remain strong however in any portfolio formed on firm characteristics
related to real or financial options or behaviorally motivated nonlinearities. Jagannathan and Korajczyk (1986)
discuss theoretical causes of nonlinearities in stock returns, emphasizing operating and financial leverage.

6A closely related measure of nonlinearity is coskewness — the covariation of a return with the squared market
innovation. Harvey and Siddique (2000) and others provide empirical evidence of nonlinearity from this perspective.

7See, e.g., Chamberlain and Rothschild (1983) generalizing Ross (1976), and Grinblatt and Titman (1985).
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nonlinearities should therefore not be ruled out when calculating alpha for general factor models.

If contemporaneous realized betas produce biased alphas due to overconditioning, then how

should an empiricist measure conditional risk? One possibility is to use a lagged beta estimate,

a common approach following Fama and MacBeth (1973). Previous authors point out a problem,

however, with using lagged beta directly. For example, Chan (1988) shows that the market betas

of winners decline on average from the formation to the holding period, while loser betas increase,

which he explains through leverage changes. Similarly, GM observe predictable changes in the size

loadings of winners and losers during and after formation. Using a historical beta as a risk proxy

clearly biases alpha if the holding-period beta differs predictably under investor information.

We propose a simple solution to this problem, which to our knowledge has not been previously

suggested or applied in performance evaluation, by using lagged loadings as instruments rather

than direct proxies for the conditional loading. The instrumental variables (IV) approach allows

combination of beta estimates from multiple prior windows — which may be useful if stocks have

short- and long-run components in risk (e.g., Ghysels, Santa Clara, and Valkanov, 2005) — with

traditional instruments such as the dividend yield, and other risk predictors such as the formation-

period return. The IV method solves the problems noted by Chan (1988) and GM because it

adjusts the conditional beta estimate for predictable changes from the formation to the holding

period. The remedy combines the traditional method of using lagged instruments (Shanken, 1990)

with the more recent literature emphasizing realized betas (LN), and solves both the problems of

overconditioning and of predictable changes in beta from formation to holding periods.

We use this IV approach and related methods to demonstrate a substantial overconditioning

problem in momentum portfolios, consistent with prior evidence of dramatic nonlinearities in port-

folios sorted on past returns (De Bondt and Thaler, 1987; Chan, 1988; ACX; Hong, Tu, and Zhou,

2007). We also uncover a significant and previously undocumented underconditioning problem in

unconditional estimates of the momentum strategy alpha.

Prior literature (e.g., Jagannathan and Wang, 1996) shows that unconditional alphas are biased

when conditional beta covaries with the market risk premium (“market-timing”) or market volatility

(“volatility-timing”). Previous studies focus almost exclusively on market-timing to evaluate the

importance of underconditioning. For example, LN bound the market-timing bias in style portfolios

given plausible ranges of variation in beta and the market risk premium. GM give specific evidence

that market-timing is not significant for momentum. We agree with these prior findings.

We show that volatility timing has a plausible impact on alpha 2 to 10 times larger than market

timing, using a model-free analytical approximation and parameter estimates from Brandt and Kang

(2004). The substantial bound on the volatility-timing bias is easily confirmed non-parametrically,
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following from the well-known fact that market volatility is highly variable (e.g., Schwert, 1989).

Thus, whereas prior literature focuses on the underconditioning bias caused by market-timing, the

volatility-timing bias is likely to be more important in practice.

A novel and significant empirical finding in our study is that the momentum strategy possesses

remarkably strong volatility-timing, which inflates its unconditional alpha. The cause of volatility-

timing in momentum is simple and robust, deriving from two well-documented and widely-accepted

regularities: i) GM prove theoretically and empirically that the formation period market return sig-

nificantly predicts the holding period momentum beta due to selection — when formation-period

market returns are high, winners tend to have high betas; ii) high formation-period market returns

also predict low holding-period market volatility, a consequence of more general “predictive asym-

metry” in volatility (e.g., French, Schwert, and Stambaugh, 1987; Schwert, 1989; Campbell and

Hentschel, 1992; Glosten, Jagannathan, and Runkle, 1994). Combining these facts, the holding-

period beta and market volatility negatively covary, inflating the unconditional alpha.

We document these effects and their magnitudes. Instrumenting with lagged realized betas

corrects the volatility-timing bias, significantly reducing momentum alphas by 20-40% relative to

unconditional.8 By contrast, overconditioned alphas are up to 2.5 times larger, due to nonlinearities.

Thus, both underconditioning and overconditioning lead to incorrect inference about the strategy’s

conditional CAPM alpha. Instrumenting as executed in a variety of ways in our study corrects for

the volatility-timing and nonlinearities inherent in momentum returns.

Some caveats about interpretation of our study are in order. Our purpose is not to defend the

conditional CAPM or argue that correct use of conditioning information should generally improve

its fit. Rather, we seek to generate accurate alpha estimates under the model, which is the canonical

formulation of time-varying risk in finance. We take a major step in disentangling, both theoretically

and empirically, the difference between conditional beta (which may predictably move with the

market risk-premium and volatility) and nonlinearities (e.g., differences in “up-market” and “down-

market” betas where “up” and “down” realizations are unpredictable). Separating conditional beta

from nonlinearity is both important and difficult (Ferson and Schadt, 1996), and our methods

should therefore be of interest to any empiricist using dynamic asset pricing models.

Consistent with LN, our momentum alpha estimates are still significantly positive. We nonethe-

less view the performance reduction, 20 basis points per month relative to unconditional and up to

90 basis points relative to overconditioned, as both statistically and economically meaningful. Ko-
8Existing theories of rational momentum effects (Berk, Green, and Naik, 1999; Johnson, 2002; Sagi and Seasholes,

2007) are unrelated to market- or volatility-timing. In these theories, risk varies over time for individual stocks, but
on average winners load more heavily on risk than losers, and higher average risk is the source of momentum profits.
Given access to the correct factor in these models, unconditional risk adjustment would explain momentum profits.
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rajczyk and Sadka (2004) suggest that high trading costs substantially offset abnormal momentum

profits. Overconditioned alphas of almost 1.5% per month would make such arguments seem much

less relevant, but by substantially reducing alpha, our IV methods enhance the relative importance

of considering trading costs. More broadly, the conditional CAPM alpha has an important inter-

pretation as the average profit of a zero-cost conditionally market-neutral position in a strategy.

Whether a strategy has an alpha of 60 or 80 or 140 basis points per month before costs is meaningful

to an investor making an asset allocation decision. We therefore focus on testing the significance of

the difference in alpha estimates, rather than simply testing whether alpha equals zero.

In Section 2, we distinguish overconditioning from underconditioning in a general theoretical

framework. Overconditioning previously generated controversy regarding long-run reversals (De

Bondt and Thaler, 1987; Chan, 1988), and can play an important role in market-timing (e.g.,

Henriksson and Merton, 1981; Jagannathan and Korajczyk, 1986; Ferson and Schadt, 1996), and

methodologies using kernel estimates of beta (Li and Yang, 2008; Ang and Kristensen, 2009).

Section 3 shows that the plausible magnitudes of the volatility-timing and overconditioning

biases exceed the market-timing bias, which has been the focus of prior literature. We calibrate a

conditional CAPM matching the dynamics of the market premium and volatility, and asset return

nonlinearities, to previous studies. Using simulation, we assess proxy and IV methods of estimating

alpha, including techniques that incorporate contemporaneous, lagged, and filtered betas.

Section 4 contains our empirical analysis of momentum. All IV approaches confirm our primary

result that appropriate conditioning reveals the volatility-timing bias in momentum alphas, whereas

overconditioning with realized beta greatly overstates momentum performance. The IV methods

we use include incorporating lagged betas, filtering, using a two-sided kernel, and using contempo-

raneous realized beta while instead instrumenting for the market risk premium. The IV alphas are

all similar, significantly lower than either the unconditional or overconditioned estimates.

Our empirical analysis focuses on a style portfolio where turnover occurs monthly, formation

rules are mechanistic, and as a consequence daily holdings are known. Additional and thornier

issues may arise in managed portfolios where the unobservability of interim holdings is important

(e.g., Goetzmann, Ingersoll, Spiegel, and Welch, 2007).9 Appendix A contains all proofs. Appendix

B contains other details, and shows robustness under extension to conditional 3-factor performance.
9 In managed portfolios, alpha can be biased when trading occurs at a higher frequency than risk is measured, and

the pricing model holds over the same higher frequency (e.g., Leland, 1999; Goetzmann, Ingersoll, Spiegel, and Welch,
2007). The manipulation of alpha in this manner combines underconditioning (the empiricist lacks information about
risk) with misspecification of the pricing model horizon. We follow the vast majority of the empirical asset pricing
literature by using a monthly horizon for alpha measurement, while acknowledging that the relevant horizon(s) of
marginal investor(s) remains an open question. A monthly measurement interval also matches well with the monthly
turnover in momentum and other style portfolios, an important driver of their beta dynamics.
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2. Conditioning Biases in Performance Measurement

For t = 1, 2, ..., let conditional expected excess returns on asset i be

E (Rit| Ft−1) = αt−1it + βt−1it E (RMt| Ft−1) , (2.1)

where {Ft}∞t=1 is a filtration, RMt is the excess market return, αt−1it is the conditional intercept,

and βt−1it ≡ Cov (Rit, RMt| Ft−1) /V ar (RMt| Ft−1) is the conditional beta. If αt−1it = 0 and Ft−1
represents investor information, the conditional CAPM is satisfied.

The bias from estimating unconditional alpha when a conditional model holds is well understood.

Let σ2M ≡ V ar (RMt), and consider the market model R̄i = αUCi + βUCi R̄M , where αUCi is the

intercept and βUCi ≡ Cov(Rit, RMt)/σ2M . Grant (1977) shows by taking expectations of (2.1) that
R̄i = ᾱi + Cov

¡
βt−1it , RMt

¢
+ β̄iR̄M , where ᾱi ≡ E

¡
αt−1it

¢
is the mean conditional alpha, β̄i ≡

E
¡
βt−1it

¢
is the mean conditional beta, R̄i ≡ E (Rit), and R̄M ≡ E (RMt). The bias is thus

αUCi − ᾱi = Cov
¡
βt−1it , RMt

¢
−
¡
βUCi − β̄i

¢
R̄M , (2.2)

where the first term captures the direct effect of market timing and the second reflects that the

unconditional beta is generally a biased measure of average risk.

We use the following result, which is known from prior literature (Grant, 1977; Jagannathan

and Wang, 1996; LN), but has not been fully exploited.10

Proposition 1. If the conditional alpha and market premium are uncorrelated, the beta bias is

βUCi − β̄i = −(R̄M/σ2M)Cov
¡
βt−1it , RMt

¢
+Cov

¡
βt−1it , R

2
Mt

¢
/σ2M . The alpha bias can be expressed:

αUCi − ᾱi =
¡
1 + R̄2M/σ

2
M

¢
Cov

¡
βt−1it , RMt

¢
− (R̄M/σ2M)Cov

¡
βt−1it , R

2
Mt

¢
(2.3)

as a sum of market-timing and volatility-timing components.

We calibrate the potential magnitudes of both sources of alpha bias in Section 3 and find that

volatility-timing can plausibly impact alpha by 2 to 10 times as much as market-timing, even

though market-timing has received considerably more attention in the literature. Empirically, we
10Jagannathan and Wang (1996) show in equation (A12) of their Appendix that covariation between conditional

beta and market-volatility impacts unconditional alpha, but since this channel would create a complication to the
main point of their empirical analysis, they assume it equal to zero in equation (A14). Lewellen and Nagel similarly
recognize volatility-timing in their equation (2), but in the final paragraph of their Section II determine not to evaluate
the importance of this channel in their calibration. Grant (1977) includes volatility-timing in his equation (12.1), but
assumes it away by continuing his analysis with equation (12.2) under the assumption of homoskedasticity.
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show in Section 4 that volatility-timing significantly inflates the unconditional momentum alpha,

due to negative covariation between conditional beta and market volatility.

2.1. General Conditioning Information

We generalize the unconditional bias identified by previous authors. Assume an empirical estimate

β̂it of the conditional beta β
t−1
it , where the estimate may or may not belong to investor information

Ft−1. For example, if the empiricist evaluates the data at T > 0, then β̂it must be measurable with
respect to GT ⊆ FT , but in general GT * Ft−1. In particular, the realized beta from a window

containing t may be calculated by an empiricist at T > t, but is not available to investors at t− 1.
To capture this idea, decompose the beta estimate and the market return into parts that are

predictable to investors at time t− 1 and residuals:

β̂it = β̂
t−1
it + εβt, RMt = R̄Mt + εMt, (2.4)

where β̂
t−1
it ≡ E(β̂it|Ft−1) and R̄Mt ≡ E(RMt|Ft−1). Note that if β̂it is measurable with respect to

the investor information Ft−1, then by definition the residual εβt is identically zero.
Denote the conditional and unconditional alpha estimates α̂it = Rit − β̂itRMt and α̂i ≡ E(α̂it).

Proposition 2. The bias in α̂it under investor information is E(α̂it − αt−1it |Ft−1) = ∆UCαt +∆OCαt ,
where ∆UCαt ≡

³
βt−1it − β̂

t−1
it

´
Rt−1Mt and ∆

OC
αt ≡ −Cov (εβt, εMt| Ft−1). Taking expectations gives the

bias in mean alpha: α̂i − ᾱi = ∆̄
UC
α + ∆̄OCα , where

∆̄UCα ≡ E
³
βt−1it − β̂

t−1
it

´
R̄M + Cov

³
βt−1it − β̂

t−1
it , R

t−1
Mt

´
(2.5)

∆̄OCα ≡ −Cov (εβt, εMt) . (2.6)

We call the first term the underconditioning bias, because the difference βt−1it − β̂
t−1
it is predictable

under Ft−1. By contrast, the second term reflects overconditioning because it can be nonzero only

when β̂it depends on information not available to investors.

Proposition 2 nests a number of special cases. When β̂it is the unconditional beta, then the

overconditioning bias is zero and the underconditioning bias is the formula (2.2) known from prior

literature. More broadly, if β̂it is measurable with respect to investor information then the over-

conditioning bias ∆̄OCα is zero and the underconditioning bias ∆̄UCα generalizes (2.2). Conversely, if

the empirical beta is an unbiased estimate of the true investor beta, i.e., E(β̂it|Ft−1) = βt−1it , the

underconditioning bias ∆̄UCα is zero but an alpha bias may still be present due to overconditioning.

A simple example illustrates how beta asymmetry and overconditioning interact to produce a
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bias. Assume a static CAPM: R̄i = βiR̄M where βi ≡ Cov (Ri, RM) /σ2M . Let S ∈ {G,B} be a
variable that is not available to investors at time zero, but is observable ex post. For example,

G might be the event that excess market returns are greater than R̄M , and B its complement.

For s ∈ {G,B}, define the overconditioned betas βsi ≡ Cov (Ri, RM |S = s) /V ar (RM |S = s), and
denote overconditioned abnormal returns by αsi ≡ E (Ri|S = s)− βsiE (RM |S = s). We show:

Proposition 3. The overconditioned alphas satisfy E
¡
αSi
¢
=
£
βi − E

¡
βSi
¢¤
R̄M−Cov

£
βSi ,E (RM |S)

¤
.

If S contains information about the market return and βGi 6= βBi , the mean overconditioned alpha

is generally biased.

Figure 1 illustrates this proposition in a four-state setting. The CAPM holds with a slope of

one, shown by the solid line going through the origin. In the example, βi = E
¡
βSi
¢
so no beta

bias is present. The conditional regressions correspond to the two dashed lines with slopes βBi >

βGi . The concave payoffs imply Cov
£
βSi ,E (RM |S)

¤
< 0, and following Proposition 3 the mean

overconditioned alpha is positive, consistent with the intercepts αBi ,α
G
i > 0. Under convex payoffs

βBi < βGi , the mean overconditioned alpha would be negative. In general, using a beta estimate

conditioned on information not available to investors causes an alpha bias that depends on the

degree of concavity or convexity in payoffs.

2.2. Types of Overconditioning

Aided by the previous example, we discuss methodologies that may produce overconditioning biases:

Contemporaneous realized beta: Suppose an empiricist has a sample of N independent

draws from the Figure 1 example, and calculates a realized beta to use in estimating alpha. For

a sample with a large (small) proportion of G draws, the realized market return will tend to be

high (low) and the realized beta will tend to be low (high) relative to their ex ante expectations,

inducing covariation between the beta error and the unexpected market return as in (2.6).11

In addition to LN and GM, an earlier example of using contemporaneous realized beta to

measure abnormal returns is Chan (1988), who focuses on long-run reversals. He runs market model

regressions using 36-month windows of monthly returns, and interprets the average intercept as the

average conditional alpha, a procedure identical to LN except that Chan uses longer windows of

monthly rather than daily returns. Chan’s results contradict De Bondt and Thaler (1985) by making

the reversal alpha insignificant. Thus, Chan reduces the alpha of a loser minus winner portfolio by

overconditioning with contemporaneous realized beta — consistent with what we find for momentum
11 In this setting, as N grows the overconditioning bias falls. A large sample can however worsen the undercondi-

tioning problem when beta is time-varying, a tradeoff we quantify in Section 3.
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where overconditioning increases alpha. Of course, our paper provides a very different interpretation

of Chan’s result as the consequence of payoff nonlinearities and overconditioning.

Subsequent to our work, Li and Yang (2008) and Ang and Kristensen (2009) extend the LN

approach. Rather than calculating a day t alpha as the intercept from an OLS market-model

regression in a fixed window, Li and Yang allow window size to vary and use weighted least squares

where weights decline with distance from t. Ang and Kristensen use a related weighted least squares

approach. The econometric results in Ang and Kristensen assume a strict factor structure, which

eliminates the possibility of payoff nonlinearities and is narrower than required for a conditional

factor model to hold.12 Empirically, overconditioning remains an important consideration in both

approaches. Following our results, the potential overconditioning bias is larger in small windows,

and expanding the window size increases the relative importance of underconditioning.

Up-market and Down-market Betas: In the setting of Proposition 3, if G is the event that

the realized market return exceeds its expectation, then βGi and βBi have the interpretation of up-

and down-market betas. As shown in Proposition 3, it would be incorrect to interpret the intercepts

αGi or α
B
i as CAPM (or conditional CAPM) performance measures.

De Bondt and Thaler (1987, “DT”) intuitively suggest that using up- and down-betas for

performance measurement is a mistake, and draw a link with using contemporaneous realized

betas, in responding to the criticism of Chan (1988). DT run up- and down-beta regressions on

reversal portfolios and find alphas similar to Chan’s estimates. They comment, “Only when the

betas are allowed to vary with the level of the market is the alpha of the arbitrage portfolio no

longer positive... These time-varying ‘split’ betas are questionable measures of risk... It seems odd

to say that a portfolio with a beta of 1.602 in up markets and .591 in down markets is riskier

than one with up and down betas of .854 and 1.439.” The intuition of DT is correct. The realized

betas estimated by Chan and the up- and down-betas that DT estimate are not conditional CAPM

betas, as interpreted by Chan, but rather capture nonlinearities or slopes in different parts of the

return distribution. The portfolio with betas of 1.602 and .591 in the DT study consists of reversal

portfolio losers, whose convex payoffs lead to a downward bias in overconditioned alphas, consistent

with Proposition 3. By contrast, the reversal winners have concave payoffs and overconditioning

inflates their alphas.
12Ang and Kristensen also develop their theoretical results under the null of a constant market premium, which

reduces the importance of measuring conditional beta correctly since an underconditioning bias is not present. They
note that interacting factors with predictors of risk premia can justify an unconditional model with managed portfolios
as factors, but do not operationalize what managed portfolios should be used. The approach thus relies on having
adequate instruments for risk premia. By contrast, our study focuses on finding good instruments for conditional beta
while remaining agnostic about predictors for the market premium. Our alpha estimates are nonetheless empirically
robust to using contemporaneous realized beta and instead instrumenting for market returns with standard market
premium predictors.
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In the momentum setting, Rouwenhorst (1998, p. 278) uses an up- and down-beta regression

and reports that alphas, which he interprets as measures of abnormal performance, increase sub-

stantially, opposite to the effect in reversal strategies. These results are all consistent with the

overconditioning biases we document.

Henriksson-Merton and Treynor-Mazuy Regressions: To decompose managed fund per-

formance into timing ability and selection components, Henriksson and Merton (“HM”, 1981) sug-

gest regressing portfolio returns on the market return and a nonlinear function of the market return,

such as an option payoff. The coefficient on the option payoff is interpreted as timing ability and the

regression intercept identifies selection skill.13 Jagannathan and Korajczyk (1986) point out that

when payoffs are in fact nonlinear, for example due to option holdings, the HM regressions lead

to incorrect inference about both timing and selection. Specifically if the manager has no timing

or selection advantage and payoffs are convex, HM regressions incorrectly identify positive timing

ability and negative selection. Under concave payoffs one incorrectly infers negative timing and

positive selection. Overconditioning in an HM regression occurs because, as with contemporaneous

realized beta or up- and down-betas, one uses on the right-hand-side a regressor that conditions on

the realized level of market returns.

Ferson and Schadt (1996) address “conditional market-timing”. They allow conditional betas to

vary with instruments, and incorporate a call payoff as in HM, but acknowledge that their alphas

must be cautiously interpreted because of the Jagannathan and Korajczyk critique.

Two-sided Kernel Estimates: A different kind of overconditioning bias may occur when one

uses future realized betas as proxies or instruments for conditional beta. Specifically, in the presence

of real or financial options, contemporaneous market news may be correlated with innovations in

true conditional beta, either through changes in financial leverage or changes in asset risk induced

by option exercise (e.g., Hamada, 1972; Carlson, Fisher, and Giammarino, 2004). The importance

of such channels has not yet been evaluated for performance evaluation methods that use future

realized betas as instruments for conditional beta. We can say, however, that if a difference in

alpha is obtained when using one-sided (backward only) vs. two-sided beta estimates, it will be a

thorny issue to determine whether the apparent change in beta was anticipated by investors at the

beginning of the return-measurement interval, and certainly identifying instruments for the beta

change (e.g., leverage, growth options) would be an important empirical issue.

Fortunately, this type of difference between one-sided and two-sided beta estimates is not present

in our empirical work on momentum. We obtain the same alphas using past or future realized
13See also Treynor and Mazuy (1966), who suggest using a different nonlinear function of market returns — the

squared market — for a similar purpose.
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betas as instruments (we also show robustness to using contemporaneous returns with appropriate

filtering). Robustness to using future betas as instruments confirms that the overconditioning bias

in momentum portfolios derives from payoff nonlinearities related to the unexpected market return,

rather than to permanent changes in beta that might or might not be anticipated by investors.

Solutions: Examination of (2.6) shows that the overconditioning bias can be eliminated by

instrumenting for either i) the contemporaneous realized beta, or ii) the realized market return.

Consistent with prior literature (e.g., Andersen, Bollerslev, Diebold, and Wu, 2006; Ghysels and

Jacquier, 2006), realized beta is highly predictable from prior window beta estimates and other

variables, hence we focus on instrumenting for realized beta. However, our empirical results are

robust to using contemporaneous realized beta and instead instrumenting for market returns with

standard risk premium predictors. These solutions are new to the performance evaluation literature.

Summary: Our theoretical analysis provides a general framework within which to understand

both underconditioning and overconditioning biases. Unconditionally evaluating a conditional pric-

ing model (e.g., Jagannathan and Wang, 1996) is a special case of using too little information,

or underconditioning. By contrast, the problems observed by Jagannathan and Korajczyk (1986)

and De Bondt and Thaler (1987) and the bias caused by using contemporaneous realized beta

that we identify, are all special cases of the general concept of overconditioning. Our framework

distinguishes overconditioning — a new concept — from underconditioning, which is well understood

in the literature but generalized by our analysis.

3. Magnitudes of the Conditioning Biases and Empirical Methods

We analytically calculate model-free bounds on the market- and volatility-timing biases, and use a

straightforward calibration with empirical estimates from prior literature to evaluate the importance

of overconditioning. Using simulation, we assess proxy and IV methods for estimating conditional

alpha and beta.

A back-of-the-envelope calculation shows that volatility-timing can impact alpha much more

than market timing. We rewrite the alpha bias (2.3) as14 αUCi − ᾱi = αUCM + αUCσ , where

αUCM =
¡
1 + R̄2M/σ

2
M

¢
Cov

¡
βt−1it , R̄Mt

¢
− (R̄M/σ2M)Cov

¡
βt−1it , R̄

2
Mt

¢
(3.1)

αUCσ = −(R̄M/σ2M)Cov
¡
βt−1it ,σ

2
Mt

¢
. (3.2)

14We use the facts that Cov
¡
βt−1it , RMt

¢
= Cov

¡
βt−1it , R̄Mt

¢
and Cov

¡
βt−1it , R2Mt

¢
= Cov

¡
βt−1it ,σ2Mt

¢
+

Cov
¡
βt−1it , R̄2Mt

¢
. The second equality follows from Cov

¡
βt−1it , R2Mt

¢
= E

¡¡
βt−1it − β̄i

¢
R2Mt

¢
, which using the law

of iterated expactations is equal to E
¡¡
βt−1it − β̄i

¢
E
¡
R2Mt|Ft−1

¢¢
, simplifying to E

¡¡
βt−1it − β̄i

¢ ¡
σ2Mt + R̄

2
Mt

¢¢
.
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All covariances related to the market premium are contained in αUCM , while the covariance of beta

with market volatility drives αUCσ .

LN quantify the potential magnitude of αUCM . At a monthly horizon, R̄2M/σ
2
M ≈ (0.005/0.05)2 =

10−2. The ratio R̄M/σ2M ≈ 0.005/(0.052) = 2 and the potential magnitude of the second term of

(3.1) is clearly small relative to the first since V ar
¡
R̄2Mt

¢
¿ V ar

¡
R̄Mt

¢
.15 A close approximation

of the magnitude of the market-timing bias and an upper bound is thus

¯̄
αUCM

¯̄
≈

¯̄
R̄MCorr

¡
βt−1it , R̄Mt

¢
std

¡
βt−1it

¢
std

¡
R̄Mt/R̄M

¢¯̄
≤ R̄M × 1× std

¡
βt−1it

¢
std

¡
R̄Mt/R̄M

¢
≡ αmaxM .

With a standard deviation of conditional beta of 0.5, assuming the standard deviation of R̄Mt is

not larger than R̄M bounds the market-timing bias at half the market risk premium.

We show the volatility-timing bias has a larger potential magnitude. Note that

¯̄
αUCσ

¯̄
=

¯̄
R̄MCorr

¡
βt−1it ,σ

2
Mt

¢
std

¡
βt−1it

¢
std

¡
σ2Mt/σ

2
M

¢¯̄
(3.3)

≤ R̄M × 1× std
¡
βt−1it

¢
std

¡
σ2Mt/σ

2
M

¢
≡ αmaxσ .

The relative size of the two bounds is

αmaxσ

αmaxM

=
std

¡
σ2Mt/σ

2
M

¢
std

¡
R̄Mt/R̄M

¢ . (3.4)

Market volatility is widely known to be highly variable (e.g., Schwert, 1989), so we may intuitively

expect this ratio to be larger than one. Direct evidence of the quantities in (3.4) is available

from Brandt and Kang (2004), who estimate a latent-variable specification of joint variations in

the market risk premium and volatility. Using their results, the numerator is approximately 1.2

with a two standard deviation range of about ±0.20, while the denominator is approximately 0.3
with a two standard deviation range of about ±0.15. We infer that the plausible magnitude of the
volatility-timing bias is about 2 to 10 times larger than the market-timing bias.

We non-parametrically confirm the magnitude of the numerator of (3.4). The standard deviation

of VIX-squared, since its inception and adjusted to monthly variance, is approximately 0.00337,

roughly equal to the mean of (monthly adjusted) VIX-squared over the same period, and about

1.5 times the variance of the CRSP value-weighted index from 1925-present. Whereas the upper

bound for the market-timing bias suggested by LN was based on very aggressive assumptions about
15The squared conditional market returns is of the order .000025, and the range of plausible values is narrow relative

to the range of the conditional market return since |R̄Mt| ¿ 1.
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variability of the market premium, an estimate of 1 ≤ std
¡
σ2Mt/σ

2
M

¢
≤ 1.5 is entirely reasonable

for bounding volatility-timing. Thus, if we are to find evidence of an underconditioning bias in any

asset return, it will more likely be due to volatility timing than market timing. Following (3.3), the

impact of volatility timing on alpha can reach 0.5 to 0.75 times the market risk premium, which is

certainly enough to be meaningful to investors.

3.1. A Model of Market-timing, Volatility-timing, and Nonlinearities

We provide a simple model of underconditioning and overconditioning biases using a realistic cal-

ibration of market returns from prior literature, and evaluate different empirical methods of esti-

mating alpha. The key components of such a model are the dynamics of the market risk premium

and volatility, and the specification of beta dynamics and nonlinearities in individual asset returns.

Following Brandt and Kang (2004), we choose the conditional mean and variance of the market

return to be a bivariate lognormal process.16 This ensures a positive market premium consistent

with theoretical priors, as in Bekaert and Harvey (1995) and De Santis and Gerard (1997), and also

captures the approximate lognormality of volatility documented by Andersen, Bollerslev, Diebold,

and Ebens (2001). These choices have many precedents in prior literature.17

Let t = 0, 1, .., T , index days, and let τ(t) map days to “months”. Market returns follow RMt =

R̄Mt + εMt, where εMt is normally distributed with mean zero and variance σ2Mt. We assume that

the conditional mean and variance are determined by state variables observable to investors at the

end of the prior month. That is,

R̄Mt ≡ E (RMt|Ft−1) ≡ R̄M exp
£
λMXτ(t)−1 − λ2M/2

¤
(3.5)

σ2Mt ≡ V ar (RMt|Ft−1) ≡ σ̄2M exp
£
λσYτ(t)−1 − λ2σ/2

¤
, (3.6)

where σ̄2M is the average conditional variance and the state variables follow AR(1) processes:

Xτ = ϕxXτ−1 + σxεxτ , Yτ = ϕyYτ−1 + σyεyτ , (3.7)

where −1 < ϕx,ϕy < 1, the innovations εxτ and εyτ are standard normals with correlation ρε, and
16Many specifications of market return dynamics are available in the literature. For example, the market risk

premium can be modeled as a linear, Markov-switching, or log-linear process, and similar choices can be made for
market volatility. In prior versions we have used both linear and Markov-switching specifications for the market
premium and obtained results similar to those reported here. Following Proposition 1, the market- and volatility-
timing biases depend on the variability of the market risk premium and volatility, not on a particular choice of
functional form.
17Latent time-variation in the conditional mean is modelled by Lamoureux and Zhou (1996) and others. Stochastic

volatility in market returns is estimated by numerous authors (e.g., Wiggins, 1987; Jacquier, Polson, and Rossi, 1994;
Kim, Shephard, and Chib, 1998).
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the normalizations σx =
¡
1− ϕ2x

¢1/2 and σy =
¡
1− ϕ2y

¢1/2 ensure unit unconditional variance.
The stock return Rit satisfies R̄it ≡ E (Rit|Ft−1) = αt−1it +β

t−1
it R̄Mt, where α

t−1
it is the conditional

intercept and the conditional beta may vary with either of the state variables:

βt−1it ≡ Cov (Rit, RMt|Ft−1) /σ2Mt = β̄ + bxXτ(t)−1 + byYτ(t)−1. (3.8)

Note that βt−1it is known to investors at the end of the month prior to t.

3.1.1. Underconditioning Biases

We decompose the alpha bias caused by unconditional evaluation:

Proposition 4. Under the dynamics (3.5)-(3.8) and the conditional CAPM (αt−1it = 0), the un-

conditional alpha satisfies αUC = αUCM,direct + αUCloading, where the direct market-timing alpha is

αUCM,direct = Cov
¡
βt−1it , RMt

¢
= λM R̄M (bx + byCov (X,Y )) ,

and the loading-mismeasurement alpha is αUCloading = −R̄M
¡
βUC − β̄

¢
. Expressions for the uncon-

ditional beta bias and Cov (X,Y ) are given in the Appendix.

To better understand these biases, we compare with an almost equivalent decomposition:

Proposition 5. The unconditional alpha bias can be decomposed αUC = αUCM + αUCσ , where

αUCM =

µ
1− kμ

σ2M

¶
Cov

¡
βt−1it , R̄Mt

¢
= λM R̄M

µ
1− kμ

σ2M

¶
(bx + byCov (X,Y )) , (3.9)

αUCσ = −
¡
R̄M/σ

2
M

¢
Cov(βt−1it ,σ

2
Mt) = −λσR̄M

¡
σ̄2M/σ

2
M

¢
(by + bxCov (X,Y )) , (3.10)

are respectively the total market-timing and volatility-timing biases and kμ is given in the Appendix.

The total market-timing alpha αUCM is proportional to the direct market-timing alpha αUCM,direct,

with their difference due to the impact of market timing on the beta bias. The ratio of total to

direct market-timing alphas is αUCM /αUCM,direct ≈ 1 when alpha is measured at a monthly frequency.18

Thus, if the loading-measurement alpha has any practical consequence, it must be due to volatility

timing as captured by αUCσ . The tight link between loading mismeasurement and volatility timing

is explained in more detail in Appendix B. Because the total and direct market-timing alphas are

empirically very close, we do not distinguish between the two in subsequent discussion.
18This follows from the calculation αUCM /αUCM,direct = 1− kμ/σ2M . Under a reasonable calibration, discussed below,

the ratio kμ/σ2M = R̄2M (2e
λ2M − 1)/σ2M ≈ .0062

¡
2e0.09 − 1

¢
/.0025 ≈ .02 .
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From Proposition 5 and consistent with the previous model-free calibration, the market-timing

alpha is proportional to the standard deviation λM of the log market risk premium, and the

volatility-timing alpha is proportional to the standard deviation λσ of log variance. A compari-

son of the magnitudes of these effects is therefore straightforward, as shown in Table 1 where we

assume Cov (X,Y ) = 0 for simplicity.

The market-timing bias in Panel A satisfies αUCM ≈ λM R̄Mbx. We consider values of λM ranging

from 0.10 to 0.50. At the upper end λM = 0.50, which is slightly more than two standard deviations

above the point estimate in Brandt and Kang (2004), the 95% confidence interval for the market

risk premium goes from 3% to 20% annually.19 The results are consistent with Table 1 in LN,

showing that for reasonable magnitudes of variation in the market risk premium and beta, the

underconditioning bias is moderate, at the upper end about 0.2% per month.20

Panel B shows the volatility-timing bias. We can calibrate the magnitude of λσ in several ways.

Using the estimates provided in Brandt and Kang gives an estimate of λσ of about 1.2. (See footnote

19). This implies that the 95% confidence interval for volatility differs by a factor of approximately

10 from its upper to lower ends, consistent with observed values of the VIX, which has ranged from

a maximum of 90 to a minimum of 10 over the five year period ending December 31, 2008.21 Panel

B considers values of λσ from 0.8 to 1.6 to reflect a range of more or less conservative possibilities.

The magnitudes of the volatility-timing alphas in Panel B are considerably larger than the market-

timing alphas in Panel A. For example, when λσ = 1.2 and by = 0.6, the volatility-timing alpha of

0.46% per month is more than twice as large as any of the plausible calibrations in Panel A.

Table 1 therefore confirms our model-free calibration, and verifies an important new result.

While prior authors have been aware of the theoretical possibility that a volatility-timing bias can

arise from failing to account for conditional beta dynamics, no previous study has emphasized the

quantitative significance of this channel.22

One can obviously combine the biases in Panels A and B. For any individual investment strategy,

these effects may reenforce or counteract one another depending on the signs of bx and by and

covariance in the state-variable innovations. The cumulative effects of market- and volatility-timing
19The model we use in calibration is a special case of the model estimated in Brandt and Kang, Table 3, Model A.

From their estimates, the point estimate of the variability of the market risk premium is about λM ≈ 0.3, with a two
standard deviation range of about ±0.15. Similarly, λσ ≈ 1.2 with a two standard deviation range of about ±0.20.
20For example, when λM = 0.5 and bz = 0.6, implying a 95% confidence interval for beta from −0.2 to 2.2, the

estimated underconditioning bias is 0.19% per month.
21The upper end of the 95% confidence interval for conditional volatility is given by σ̄M exp

£
1.96λσ/2− λ2σ/4

¤
≈

2.26σ̄M and the lower end is σ̄M exp
£
−1.96λσ/2− λ2σ/4

¤
≈ 0.22σ̄M .

22Previous research has shown the importance of volatility-timing in other contexts. For example, Fleming, Kirby,
and Ostdiek (2001, 2003) demonstrate significant value to volatility-timing in a portfolio choice context, and Busse
(1999) shows that mutual fund managers engage in volatility timing. Carlson, Fisher, and Giammarino (2009) show
that corporate seasoned equity offerings time low points of firm and market volatility.
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can clearly be empirically meaningful.

3.1.2. Overconditioning Bias

To complete our specification of the returns Rit we permit nonlinearity:

Rit = αt−1it + βt−1it RMt −∆βσMt {|εMt|− E (|εMt|)}+ εit, (3.11)

where εit ∼ N
¡
0,σ2it

¢
is independent of other variables and the parameter ∆β has critical impor-

tance. When ∆β = 0, returns are linear. If ∆β > 0 the return is concave in the market return

and if ∆β < 0 the relationship is convex, permitting a wide range of nonlinearities. Denote the

down-market beta β−it ≡ Cov
¡
Rit, RMt|RMt < R̄Mt

¢
/V ar

¡
RMt|RMt < R̄Mt

¢
= βt−1it + ∆β and

the analogous up-market beta β+i = βt−1it −∆β. We show:

Proposition 6. The return on asset i satisfies

Rit =
a−it + β−itRMt + εit if RMt ≤ R̄Mt
a+it + β+itRMt + εit if RMt ≥ R̄Mt

,

where a−it = αt−1it +∆β

hp
2/πσMt − R̄Mt

i
and a+it = αt−1it +∆β

hp
2/πσMt + R̄Mt

i
.

Thus, if an empiricist uses the up- and down- betas to risk adjust, the conditional intercept differs

from the investor alpha αt−1it . The overconditioned intercepts a
−
it and a

+
it are proportional to beta

asymmetry, determined by the parameter ∆β.

Similar biases occur if one overconditions by using contemporaneous realized beta. To see this,

we calibrate the model. We normalize β̄ = 1, assume R̄M = 0.0003 (about 7.5% annually), σ̄M =

0.01 per day (about 16% per year), and σit = σMt (implying total volatility of 23% annually). This

idiosyncratic volatility is small for an individual stock, but represents well the volatility of many

portfolios. We consider a range of beta asymmetries ∆β ∈ {0, 0.2, 0.5, 1.0,−0.2} consistent with the
empirical results of ACX.23 For long-short portfolios beta asymmetries may plausibly be larger.

For each model specification, we simulate 108 months of n = 21 daily returns and calculate

unconditional alphas and betas from both monthly and daily returns. Following LN, we partition

the data into windows of N months (nN days), for N = 1, 3, 6. In each window, indexed by

θ, we run a market model regression Rit = aiθ + βCPiθ RMt + εit, where the estimated loading
23ACX sort days within a year by whether the excess market return is below or above its within-year average,

and run market model regressions on the subsets of “down” and “up” days. They sort companies by the difference
between the down and up betas and find considerable dispersion. For the highest quintile, this beta asymmetry is
almost one, roughly consistent with the specification ∆β = ±0.5.
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βCPiθ is the contemporaneous realized beta. We estimate alpha using the buy-and-hold abnormal

return within the window, rescaled to monthly units: αCPiθ ≡
¡
Riθ − βCPiθ RMθ

¢
/N .24 We first set

λM = λσ = bx = by = 0. Returns are then iid, and the unconditional CAPM holds, which allows

us to isolate overconditioning.

For different values of ∆β, Table 2 shows the unconditional (UC) alphas, and the contempora-

neously risk-adjusted alphas αCPiθ . When ∆β = 0.5, the overconditioned alpha is biased by 0.42 for

monthly windows, 0.13 for quarterly windows, and 0.07 for semiannual windows, where we hence-

forth report all alphas in percent per month. Overconditioning thus has a large impact in small

windows, and as N grows the conditional regressions converge to the unconditional case. Consis-

tent with Proposition 4, the magnitude of the overconditioning bias when using contemporaneous

realized beta risk-adjustment is linear in the beta asymmetry ∆β.

3.1.3. The Overconditioning vs. Underconditioning Tradeoff

In the presence of both nonlinearities and time-variation in conditional beta, overconditioning and

underconditioning can simultaneously be important. Using contemporaneous beta, as window size

N increases the underconditioning problem (diluting information about conditional beta) becomes

more important relative to overconditioning (measurement error due to nonlinearities). Alterna-

tively, if state variables are persistent, using a lagged beta eliminates the possibility of overcondi-

tioning while capturing most of the useful information about conditional beta. We define alphas

from lagged portfolio betas by αLPiθ ≡ 1
N

£
Riθ − βLPiθ RMθ

¤
, where βLPiθ ≡ βCPi,θ−1.

Table 3 shows alphas from unconditional (UC), contemporaneous portfolio (CP), and lagged

portfolio (LP) risk-adjustment. All specifications set ϕx = ϕy = 0.9 , λM = 0.3, λσ = 1.2, equal

to their approximate point estimates from Brandt and Kang (2004) and other literature.25 The

specifications thus capture realistic variability of the conditional mean and volatility of the market

and persistence of the state variables. Across specifications, we vary bx, by, and ∆β, since assets

generally differ in market-timing, volatility-timing, and payoff nonlinearities.

Cases 1-3 consider respectively an asset with only nonlinearities but no conditional beta dynam-
24LN instead multiply aiθ by the number of days in the month n and call this the conditional alpha. To distinguish

the two approaches, we call αCPiθ a “buy-and-hold” alpha, and naiθ a “rescaled daily” alpha. Longstaff (1989) shows
that when the CAPM holds for a given observation interval, it need not be satisfied at other horizons. In our model, the
CAPM holds exactly at a daily frequency, but we find no practical distinction between buy-and-hold or rescaled daily
results in the context of the model, and hence report only one set of results. In empirical data where microstructure
effects are important, the distinction can be significant as we later discuss.
25For all specifications considered in Brandt and Kang (2004), the persistence parameters for both the conditional

mean and the conditional volatility are estimated to be within one standard deviation of 0.9, measured at a monthly
frequency. Substantial related literature establishes that market returns are predictable primarily at low frequencies
(e.g., Lettau and Ludvigson, 2001a; Cochrane, 2001), and that monthly stock market volatility is highly persistent
(e.g., Schwert, 1989).
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ics (∆β = 0.5, bx = by = 0), only market-timing (bx = 0.5,∆β = by = 0), and only volatility-timing

(by = 0.5,∆β = bx = 0). The results show that using lagged realized beta to risk adjust offers a

useful compromise. The CP approach does well when there are no nonlinearities (cases 2 and 3),

but suffers badly when nonlinearities are present. The UC alpha is unbiased when there are no

conditional beta dynamics even in the presence of nonlinearities (case 1). The LP alpha does well

in all three cases, eliminating the possibility of overconditioning, while also capturing most of the

useful information about contemporaneous realized beta because the state variables are persistent.

Specifications 5-7 show the bias in each method when there is time-variation in conditional beta

as well as payoff nonlinearities. The results confirm that both unconditional and overconditioned

alphas can have substantial biases for the same asset, the UC due to underconditioning and the CP

due to overconditioning. The lagged portfolio alpha robustly has low alphas in all cases, because

it eliminates the possibility of overconditioning while capturing most of the useful information

about conditional beta. In the final two specifications (8-9) we consider the possibility that the

state variables X and Y are positively or negatively correlated. The correlation of the market risk

premium and volatility can either enhance or diminish the underconditioning bias, depending on

whether the signs of bx and by are the same or opposite.

3.2. Instrumental Variables and Filtering

Using lagged beta as a risk proxy has the disadvantage that risk may predictably change between

the prior and contemporaneous window, as noted by Chan (1988) and GM. To correct this problem,

following Shanken (1990) and others, we specify the conditional return regression:

Riτ = αIV 1i + βi

h
1 Zτ−1

i0
RMτ + eiτ , (3.12)

where βi is a 1× (k + 1) parameter vector, Zτ−1 is a 1× k instruments vector, τ indexes months,
and αIV 1i is the alpha.26 We denote the conditional beta estimate βIV 1iτ ≡ βi[ 1 Zτ−1 ]

0. Common

instruments Zτ−1 are risk premium predictors such as the dividend yield (DY), term spread (TS), T-

bill rate (TB), and default spread (DS). Since we have shown that volatility-timing has a potentially

larger impact than market-timing for performance measurement, instruments are also needed for

joint movements in conditional beta and market volatility. We recommend in particular that lagged

betas should be useful instruments in performance analysis.

Instrumenting with lagged betas in (3.12) differs importantly from proxying as in the last section.
26The specification is identical to equation (4) in Ferson and Schadt (1996). Shanken permits the intercept to also

be linear in the instruments, and notes that the coefficients are zero under the null. Ferson and Harvey (1999) use
the coefficient restrictions in a time-varying intercept specification to reject the conditional Fama-French model.
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Proxying is equivalent to setting Zτ−1 = βCPτ−1 with βi = [ 0 1 ]. By contrast, instrumenting allows

conditional beta to be a linear combination of beta estimates, possibly from multiple prior windows,

as well as other potential predictors in Zτ−1. Proxying suffers when beta changes predictably, as

noted by Chan (1988) and GM, whereas the IV method corrects this problem.

We also use a closely related two-step IV method, restricting (3.12).27 Consider the first-stage

predictive regression βCPiτ = γi0+γi1Z
0
τ−1+εiτ , as in Ghysels and Jacquier (2006). The second-stage

return regression specifies conditional beta to be linear in the fitted first-stage CP beta:

Riτ = αIV 2i +
³
φi0 + φi1

bβCPiτ ´RMτ + uiτ , (3.13)

where the conditional beta estimate is βIV 2iτ ≡ φi0 + φi1bβCPiτ . If the fitted CP beta is an unbiased
predictor of conditional beta then φi0 + φi1 = 1, and if it is efficient then additionally φi0 = 0.

Estimating φi0 and φi1 is sensible when CP beta and conditional beta are correlated, but rescaling

or translating offer potential for improvement. One important reason why rescaling can help is

that the realized beta estimated from daily data tends to underestimate the appropriate loading

at longer horizons such as one month (e.g., Dimson, 1979). Mitigating the microstructure bias in

high-frequency realized betas is thus an additional benefit of using an IV approach.28

We assess the IV alphas and two filtering approaches, using as instruments betas lagged one,

two, and three months (βLP1τ ,βLP1τ−1 ,β
LP1
τ−2 ) and betas calculated from larger three- and six-month

windows (βLP3τ ,βLP6τ ). For comparison, we also use the contemporaneous beta βCPτ . To provide

benchmarks, the Appendix applies the extended Kalman filter to obtain optimally filtered beta

estimates, as well as an approximate linear filter. From the exact filter, denote βFXτ |τ−1 the predicted

beta using information up to the end of month τ − 1, and βFXτ |τ the estimate at the end of month

τ . Similarly, βFLτ |τ−1 and βFLτ |τ denote betas from the linear filter. We use a model specification that

includes market- and volatility-timing and nonlinearities (bx = by = ∆β = 0.5), simulate data, and

regress the known conditional beta on different instrument sets in order to assess accuracy from a

beta estimation perspective. We then carry out the one-step and two-step IV procedures for each

instrument set, including the filtered betas, to evaluate effectiveness in measuring alpha.
27Whereas IV1 allows conditional beta to be any linear function of the instruments, IV2 requires the instruments

to first be projected on the CP beta. As a consequence, under the null that the IV2 model is correct, the one-step
coefficients are the product of the IV2 first stage parameters and the second stage coefficient.
28 In a model where there are no microstructure effects, enforcing restrictions on φi0 and φi1 in the second stage

regression may be beneficial. The first-stage regression provides an unbiased forecast bβCPiτ of the daily realized beta,
guaranteeing that the loading-mismeasurement bias is minimized. The second-stage regression introduces the pos-
sibility that average estimated beta can differ from the true conditional beta, and hence trades off the benefit of
accounting for potential impacts of microstructure biases against the cost of any loading bias caused by volatility
timing. We leave a quantitative investigation of the practical magnitude of this tradeoff for future research.
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Table 4 gives results. In all cases, the IV1 and IV2 alphas are indistinguishable so we report only

one set of IV alphas. With no instruments (regression 1), we reproduce the unconditional alpha

bias from Table 3. In (2), the CP beta is a noisy but unbiased estimator of the true conditional

beta (weights on the constant and βCPτ are 0.122 and 0.878 respectively), and produces a high R2

of 0.878. Nonetheless, the alpha bias of 0.359 is substantial due to overconditioning. By contrast,

the one month lagged beta is noisier (3), with a lower weight in the conditional beta regression

(0.789) and a lower R2 (0.710), but a substantially smaller conditional alpha (0.138).

Regressions (4-9) show that by using various combinations of lagged betas from different window

sizes, one can marginally increase the overall R2 of the conditional beta regression, and produce

an alpha of 0.128.29 All of the filtered beta estimates (regressions 10-13) are unbiased and efficient

(coefficients in the beta regression of approximately 0 and 1). The linear filter with information up

to τ − 1 produces almost the same R2 and alpha estimate as the regressions that use combinations
of lagged betas, which is expected since the predictions of the linear filter are primarily driven by

lagged realized betas. The τ − 1 predictions of the exact filter give additional small improvements
in R2 and alpha. Incorporating information through the end of τ into the exact filter gives the best

R2 as it should, and an alpha very close to zero. We note that without direct access to the state

variables used by investors, even exact filtering does not produce an R2 of 1 or an alpha of 0 —

there is no universal solution to the Hansen and Richard critique, even with exact filtering.

Linear filtering with information including τ increases the beta regression R2 almost to the

level of exact filtering, but achieves a similar alpha estimate to using lagged data only. This occurs

because the linear filter is approximate, and while it increases useful information its filtering of the

overconditioning problem is not complete, and a tradeoff between overconditioning and undercon-

ditioning remains.30 In empirical settings, the exact structure of the underlying data-generating

process is not known with certainty, making exact filtering considerably more complex. The re-

sults discussed in this subsection show, however, that the less model-specific linear filtering or

IV procedures can substantially improve alpha estimates by capturing useful information without

introducing a large overconditioning bias, providing an effective and practical empirical approach.

4. The Conditional Performance of Momentum Strategies

We introduce the momentum data including returns and betas, and then discuss some simple

methodological adaptations that allow us to move from the single-asset simulation environment
29For additional discussion of prediction using regressors derived from different window sizes, see, e.g., Ghysels,

Santa-Clara, and Valkanov (2005), and in the specific context of betas Ghysels and Jacquier (2006).
30 In untabulated results, we verify that depending on parameters, incorporating contemporaneous information into

the linear filter can either slightly improve or slightly worsen alpha estimates relative to using only lagged information.
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of Section 3 to the empirical analysis of high-turnover momentum portfolios. We then present

the empirical results, including conditional performance measures and decompositions of the alpha

differences into market-timing, volatility-timing, and overconditioning components. We focus in the

main text on conditional CAPM performance, and show in Appendix B that the methods are easily

extended to conditional 3-factor model performance, giving robust results.

We consider three momentum strategies (Jegadeesh and Titman, 1993), denoted 6-d-h, with

common 6 month formation periods over which stocks are sorted into winners and losers. We

assume d months delay between the end of the formation period and the initial investment, after

which stocks are held without rebalancing for h months. Details are given in Appendix B. The

specific portfolios are 6-0-6, 6-1-1, and 6-1-6, which aids comparison with LN (6-0-6) and GM (6-1-

1). We calculate the returns for winners (W) and losers (L) from January 1930 to December 2005,

and their difference (WL). Our results are robust to variations of the portfolio rules.31

Table 5 reports mean returns and betas. Panel A shows means in excess of the T-bill rate for

each portfolio at horizons of one day and one, three, and six months.32 The excess winner minus

loser returns are large and positive across strategies and horizons. For example, the 6-0-6 average

profit is 1.30 − 0.76 = 0.54 percent at the one month horizon with similar rescaled quarterly

and semi-annual averages. The 6-1-1 and 6-1-6 profits are respectively smaller and larger. The

unconditional betas in Panel B are loadings from standard market model regressions using daily

and monthly returns. We also report Dimson (1979) “sum” betas from daily data using the lag

structure suggested by LN,33 which helps to mitigate the effects of asynchronous trading. Dimson

adjustment has a stronger impact on losers than winners, consistent with the lower liquidity of

losers. The unconditional winner minus loser loadings are then negative for both daily and monthly

horizons. The average contemporaneous portfolio (CP) betas reported in Panel B are calculated

by forming non-overlapping windows of N ∈ {1, 3, 6} months. Within each window we estimate a
Dimson regression from daily momentum returns, and the contemporaneous beta is the sum beta.

The winner minus loser portfolio has a lower average CP than UC beta, consistent with a UC

loading bias generated by negative volatility-timing.

Panel C shows correlations between the formation-period market return and holding-period be-
31We confirm robustness to (i) including only NYSE and AMEX stocks, (ii) imposing a minimum price screen of

$1, (iii) restricting the sample period to January 1964-December 2005, and (iv) combinations of the above.
32The daily mean is multiplied by the average number of trading days in one month. The approximate number of

days in a month is 24.5 for months prior to 1952, and 21 thereafter, due to the end of Saturday trading. The overall
average is approximately 22 days in a month. For a horizon of N months, we scale each mean return by 1/N .
33We run the regression Rit = ai + βi0RM,t + βi1RM,t−1 + βi2

P4
k=2RM,t−k/3 + εit,where Rit and RM,t are

respectively excess returns on portfolio i and the value-weighted CRSP index. The Dimson “sum” beta is βi0+βi1+βi2.
Our results are robust to using (i) no Dimson leads or lags, (ii) one lead of market returns in addition to lags, and
(iii) alternatively using the Fowler and Rorke (1983) adjustment for asynchronous trading.
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tas, market returns, and squared market returns. RU6 is the prior 6 month market return, which

relates to the formation period market returns. Consistent with GM, RU6 strongly predicts winner

and loser betas with positive and negative signs respectively. RU6 also negatively predicts future

squared market returns, confirming a well-known regularity (e.g., French, Schwert, and Stambaugh,

1987). Combining these two phenomena generates negative covariation between holding-period mo-

mentum betas and market volatility. Following (3.2), such volatility-timing in momentum should

cause an upward bias in the unconditional momentum alpha. Our conditional performance evalua-

tion methods allow us to quantify the magnitude of this effect.

Panel D of Table 5 shows asymmetric betas. For the winner minus loser portfolios, the down-

market betas are uniformly larger than the up-market betas, consistent with De Bondt and Thaler

(1987) and Hong, Tu, and Zhou (2007). Following Section 3, such beta asymmetries will lead to

substantial biases in alphas calculated from uninstrumented contemporaneous realized betas.

4.1. Empirical Implementation: Portfolios vs. Individual Stocks

To apply our empirical methods to high-turnover momentum portfolios, we adapt the procedures

discussed previously. We distinguish between two types of empirical beta estimates for portfolios,

the lagged portfolio (LP) and lagged component (LC) betas. The lagged portfolio beta is defined as

in Section 3, treating the portfolio as a single asset by calculating the beta of the portfolio returns

in a prior window: βLPiτ ≡ βCPi,τ−1. The LP beta does not account for changing portfolio weights,

and if the portfolio beta changes due to changing composition (i.e., turnover of high vs. low beta

stocks), the LP beta will not accurately reflect portfolio risk in the holding period.

Our lagged component betas, by contrast, are calculated as portfolio-weighted averages of beta

estimates from the individual stocks that will be in the portfolio in the next period. The LC beta

thus uses an important piece of investor information — the portfolio weights of individual stocks at

the beginning of the investment period. To summarize the LC procedure, at the end of calendar

month τ −1 we estimate betas of the individual stocks (components) that will belong to a portfolio
in holding month τ , and sum over all components the product of (1) the estimated component beta

and (2) the beginning of month τ component portfolio weight. Obviously, many different ways of

estimating component betas are possible, for example by using different window sizes or daily vs.

monthly data. Once LC betas are calculated, a single estimate may proxy for conditional beta,

or alternatively one or more betas can be used as instruments in the IV approach, with weights

optimally allocated to the instruments most informative about portfolio risk in the holding period.

In this study, we define βLC6iτ and βLC36iτ as the LC betas where component betas are calculated

respectively from (i) six months of daily returns with loadings estimated as Dimson sum betas using
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the LN lag structure; and (ii) thirty-six month windows of monthly returns. We have calculated

betas many different ways and found no meaningful difference in alphas or R2 when using any

more than two LC betas calculated from different window sizes. We also consider as instruments

standard predictors of the market premium: dividend yield (DY), term spread (TS), one-month

T-bill rate (TB), and default spread (DS).34 Finally, we include as potential instruments 6- and

36-month prior window market returns (RU6 and RU36), motivated by the observation in Table 5

that prior window market runup predicts both future beta and market volatility, consistent with

prior literature (e.g., GM; French, Schwert, and Stambaugh, 1987).

Implementing filtering as in Section 3 must also account for the high turnover of momentum

portfolios. It is beyond the scope of the present study to empirically implement exact nonlinear

filtering for momentum.35 We do however adapt an approximate linear filter, which has the potential

to capture useful information in the contemporaneous realized beta that is not included in lagged

instruments, while filtering out the part of contemporaneous beta that is correlated with the surprise

in contemporaneous market returns. Following our Monte Carlo study, the simple-to-implement

lagged beta, IV, and linear filtering methods should correct underconditioning biases related to

market- or volatility-timing, while avoiding the overconditioning bias.

4.2. New Estimates of Momentum Alphas

We calculate momentum alphas from 1) proxy methods, using contemporaneous and lagged betas;

2) IV methods, using lagged betas and other instruments; 3) methods that incorporate contempora-

neous and future information while instrumenting, including using contemporaneous realized beta

while instead instrumenting for the market return, a two-sided kernel, and filtering. All methods

that use instrumentation consistently reduce momentum alphas by 20-40% relative to uncondi-

tional, while overconditioned alphas are up to 2.5 times larger.

4.2.1. Proxy Methods

Table 6 shows CAPM alphas using empirical proxies for conditional beta. Column (i) reports

unconditional alphas. Consistent with the negative market exposure of the winner minus loser
34Dividend yield is computed following Fama and French (1988). Term spread is from Robert Shiller’s web-

site http://www.econ.yale.edu/~shiller/data.htm, measured at the end of the previous year. Default spread
is the difference between BAA and AAA corporate bond yields, obtained from the Federal Reserve,
http://research.stlouisfed.org/fred2. T-bill is the 30-day yield from CRSP.
35Such an endeavor would require assumptions about the nonlinear data generating process for each individual

stock entering and leaving the momentum portfolios, and would be much more computationally intensive than the
single asset simulation study in Section 3. Moreover, a fully structural approach would require a complete specification
of not only conditional beta dynamics for each stock, but also the dynamics of beta asymmetries.
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portfolios, UC alphas increase relative to raw profits. At a one month horizon, the 6-0-6 strategy

has an alpha of 0.57 for winners, −0.24 for losers, and a momentum alpha of 0.81.

Columns (ii) and (iii) use contemporaneous realized betas as proxies for conditional beta. In

column (ii), alphas are calculated from rescaled daily average returns: i.e., αCP,RDiτ = RRDiτ −
βCPτ RRDMτ , where R

RD
iτ and RRDMτ are respectively the average daily return in window τ of asset

i and the market. The alphas in column (iii) use buy-and-hold returns over the same interval:

αCP,BHiτ = Riτ − βCPτ RMτ . We view the RD alphas as unreliable because daily return averages

can be highly impacted by microstructure effects, and in particular average daily returns of illiquid

portfolios such as the loser side of the momentum strategy are biased downwards.36 For example,

the raw returns of the momentum strategy reported in Table 5 are substantially larger for daily

returns than any other horizon. Rescaled daily-return alphas are the focus of recent studies using

realized betas (e.g., LN; Li and Yang, 2008; Ang and Kristensen, 2009), and we report this measures

simply for comparison purposes. The one-month horizon buy-and-hold alphas are easy to compare

with the one-month unconditional alpha because both performance measures use identical returns

Riτ , and differ only by their risk measures. For these reasons, we henceforth focus our discussion

on the buy-and-hold alphas.

For the one-month horizon N = 1, the buy-and-hold CP alpha is substantially larger than

unconditional (1.09 vs. 0.81 for 6-0-6). By contrast, the lagged portfolio alpha in column (v) is

substantially smaller (0.47). If one believes that the state variables driving joint movements in

conditional beta and market returns are persistent, this dramatic difference between CP and LP

alphas suggests an overconditioning problem. At three- and six-month horizons, the difference

between using a contemporaneous and lagged beta becomes gradually smaller. With N = 3 the

contemporaneous portfolio alpha is 0.86 for winners minus losers while the lagged portfolio alpha

is 0.50. For N = 6 the contemporaneous and lagged portfolio alphas are almost identical (0.61

vs. 0.58) and are both smaller than unconditional (0.81). These results can be explained by the

tradeoffs between overconditioning and underconditioning (Sections 2 and 3) and the large beta

asymmetry of momentum portfolios (Table 5). As window size increases (N = 1, 3, 6), the impact

of overconditioning becomes smaller and the contemporaneous portfolio alphas fall dramatically

(1.09, 0.86, 0.61). By contrast, larger windows worsen the underconditioning problem by blending

months with different portfolio holdings and risk, and lagged portfolio alphas rise moderately with
36 In an earlier working paper (Boguth, Carlson, Fisher, and Simutin, 2007), we showed theoretically the impact

of return autocorrelation on the ratio of rescaled-daily to buy-and-hold returns. RD returns are biased downward
(upward) relative to BH returns when autocorrelations are positive (negative). Due to space constraints and to
maintain focus, we have removed more detailed discussion of the RD bias from this paper and plan to treat this issue
separately.

24



N (0.47, 0.50, 0.58). The pattern of these results is similar across all three momentum strategies,

and consistent with the Monte Carlo experiment in Section 3.

Average lagged component (LC) alphas are reported in columns (vi) and (vii). For all strategies,

the LC winner minus loser alphas are close to the one-month LP alphas. From Panel B, the 6-0-6

LC36 winner beta is smaller than the loser beta (1.30 vs. 1.37), which almost entirely explains the

larger winner minus loser alpha for LC36 relative to LC6 (0.49 vs. 0.43). To mitigate concerns about

microstructure biases impacting high-frequency betas, to make use of multiple beta estimates and

other predictors, and to eliminate the possibility of predictable changes in risk from prior windows

to the holding period, we next use lagged betas as instruments within the IV framework.

4.2.2. IV Alphas

Table 7 presents our IV risk-adjustment results for the 6-0-6 strategy. We fully report both stages

of the two-step procedure (beta and return regressions), as well as the alpha and R2 from the

one-step method. In all cases, the IV1 and IV2 alphas are very close, and our discussion focuses on

the two-step results. With no instruments (specification 1), the return-regression intercepts are the

unconditional alphas previously reported in Table 6, and the net momentum alpha is 0.81.

In (2), the standard instruments help somewhat to predict beta (R2 = 2.85 and 9.73 percent

for winners and losers). The first-stage fitted beta is significant in the second-stage and efficiently

predicts conditional beta for winners (φi0,φi1 = −0.12, 1.20), while showing downward bias for
losers since the sum of the two second-stage coefficients significantly exceeds one (φi0 + φi1 =

0.51 + 0.79 > 1). For winners and losers, the second-stage R2 increases by approximately two

percentage points relative to (1), and the alphas attenuate towards zero. Net alpha decreases from

0.81 unconditionally to 0.70 conditionally.

Our paper emphasizes that lagged-component betas are useful instruments for performance

evaluation.37 Relative to the standard instruments, the isolated LC6 and LC36 betas (3 and 4)

substantially improve the first- and second-stage R2. For either instrument, the winner and loser

alphas move toward zero and the net alpha falls to 0.65 and 0.64 respectively. Combining LC6 and

LC36 (5), both are significant with LC6 more heavily weighted by about 2:1, and net alpha drops

to 0.62. Adding the market runups RU6 and RU36 with the LC betas in (6) has a small impact

on R2 and slightly reduces the net alpha to 0.59. In untabulated results, the runups alone predict

beta and reduce alpha, but their effect after controlling for LC betas is marginal. Combining all
37Ghysels and Jacquier (2006) regress contemporaneous realized betas on lagged portfolio betas and other predictor

variables, similar to our first stage beta regression. They do not consider lagged component betas, which may be
justifiable given their focus on forecasting relatively low-turnover industry portfolio betas. Because of the emphasis
of their paper, they also do not consider the second-stage performance regression.
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instruments (7), the lagged component betas are stable and significant, the runups are driven out,

and among the standard instruments only dividend yield for winners and T-bill rate for losers

remain significant. Relative to (1), the momentum alpha falls by approximately 30% to 0.59.

We abbreviate the IV analysis for 6-1-1 and 6-1-6 strategies in Table 8. The results are qualita-

tively similar to those reported for 6-0-6, and the net alpha reductions from conditioning information

are approximately 20% for 6-1-6 (0.93 vs. 1.14) and 40% for 6-1-1 (0.36 vs. 0.57).

To test the statistical significance of the alpha reductions from conditioning, we use the GMM

procedure in Appendix B, which accounts for measurement error in the betas used as instruments.

For each return regression in Tables 8 and 9, an asterisk beside the winner minus loser alpha denotes

rejection of the null hypothesis that αIV ≥ αUC at the 5% level. With the standard instruments

alone, the decrease in alpha is significant only for 6-1-1. In all specifications with at least one lagged-

component beta as an instrument, the conditional alpha is significantly lower than the unconditional

alpha for all strategies.

In untabulated results we added additional lagged betas to the regressions in Tables 7 and 8. For

example, the LP6 beta, calculated from six months of daily lagged-portfolio returns, is significant

independently, but is driven out when combined with LC6. In general, LC betas dominate LP

betas, and the alphas reported in Tables 7 and 8 with LC6 and LC36 betas are robust to adding

component or portfolio betas measured over other horizons.

The results of this section show that overconditioned alphas using uninstrumented CP betas are

much larger than unconditional. By contrast, the IV procedure, which eliminates overconditioning

while capturing predictable variation in conditional beta, decreases alpha by a statistically and

economically significant 20-40% relative to unconditional.

4.3. Do Current or Future Returns Have Additional Information About Beta?

The IV alphas calculated so far use information known to be in the investor’s information set, such

as lagged betas and other instruments, to estimate conditional beta. One might wonder whether

one can incorporate information from current or future returns into beta estimates and still get

reliable alphas. We use three such methods: 1) using contemporaneous realized beta while instead

instrumenting for market returns with predictors of the risk premium, 2) incorporating future real-

ized betas into the IV alpha estimates; and 3) using linear filtering to extract additional information

from contemporaneous returns while eliminating variations related to the market return innova-

tion. We briefly discuss the methodological issues related to each approach and show that all three

methods produce additional small declines in estimated momentum alphas.
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4.3.1. Using Contemporaneous Beta and Instrumenting for Market Returns

As shown in Section 2, when one calculates alpha using contemporaneous realized beta as a proxy

for conditional beta, i.e., αiτ ≡ Riτ − βCPiτ RMτ , an overconditioning bias occurs when payoffs are

nonlinear because measurement error in βCPiτ covaries with the unexpected market return. We have

thus far focused on solving this problem by using instruments for conditional beta that are known

to investors ex ante, which eliminates any overconditioning bias.

If one wants to use the contemporaneous realized beta, an alternative that also removes the

overconditioning bias is to instead instrument for the realized market return with predictors of

the risk premium. That is, instrumenting for either the realized beta βCPiτ or RMτ eliminates

overconditioning. We correspondingly calculate the market-instrumented (MI) conditional alpha as

αMIiτ ≡ Riτ −βCPiτ R̂Mτ , where R̂Mτ is the fitted value from a first-stage regression of market returns

on instruments. In implementation, we use the full instrument set from Tables 7 and 8.

To place the MI alpha estimate in a broad context, Table 10 reports it alongside momentum

performance estimates calculated previously in the paper. The key finding is that using contempo-

raneous realized beta and instead instrumenting for the market return gives almost the same alpha

as instrumenting for conditional beta. In either case, instrumenting reduces the alpha by 20-40%

below unconditional, and is much lower than the overconditioned alphas that instrument for neither

market returns nor conditional beta.

4.3.2. Instrumenting with Future Realized Betas

To better understand the source of overconditioning in momentum portfolios, we consider using

future realized betas as instruments for conditional beta. To do this, we define forward component

(FC) betas analogously to lagged component betas. For each stock (component) i that will be in

the portfolio in period τ , we estimate the component beta in a window starting immediately after

the return interval τ . The FC beta is then the sum over i of the product of (i) the portfolio weight

of stock i at the beginning of τ , and (ii) the component beta in the forward window.

We consider using as “instruments” in the standard IV regression (3.12) a combination of LC,

CP, and FC betas, i.e., β̂iτ = wi0+
P
l wilβ

LCl
iτ +wicβ

CP
iτ +

P
f wifβ

FCf
iτ . Such an approach resembles

the procedures of Li and Yang (2008) and Ang and Kristensen (2009) because when multiple betas

are used the aggregate weights on returns may vary non-parametrically, and we expect returns

closer to the date τ to receive heavier aggregate weights.

In this framework, two different types of overconditioning biases can occur, consistent with

the discussion in Section 2. Using our previous notation, denote for m ∈ {LC,CP, FC} the resid-
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uals of the empirical beta estimates after projecting onto investor information, i.e., εmβτ ≡ βmτ −
E (βmτ |Fτ−1). Obviously, LC betas cannot produce an overconditioning bias since they are in the in-

vestor information set and their projection residuals are zero: εLCβτ = 0, implying Cov(ε
LC
βτ , εMτ ) = 0.

However, neither CP nor FC betas are measurable under investor information, and either of their

residuals εCPβτ or εFCβτ could covary with the market return surprise. We previously focused on the

overconditioning bias from using a CP beta and showed that when the asset i return is nonlinear in

the realized market return, which may occur under general factor models and is empirically likely

for many assets, then Cov(εCPβτ , εMτ ) 6= 0 and the CP alpha is biased.
A different type of overconditioning bias can occur when using an FC beta. The identify-

ing condition required for an FC beta to be a valid instrument, giving an unbiased alpha is

Cov(εFCβτ , εMτ ) = 0. However, many models of asset price dynamics imply that the unexpected

market return drives movements in future conditional beta, implying Cov(εFCβτ , εMτ ) 6= 0. For ex-
ample, if the asset i is more levered than the market, then a surprise positive (negative) market

return decreases (increases) conditional beta, implying Cov(εFCβτ , εMτ ) < 0 (Hamada, 1972). Sim-

ilarly, if firm i possesses a growth option, then locally Cov(εFCβτ , εMτ ) < 0 (Carlson, Fisher, and

Giammarino, 2004), and for a contraction option Cov(εFCβτ , εMτ ) > 0.

This discussion raises a challenging question for any study using a two-sided estimate of beta,

even if only FC and not CP betas are included. Specifically, if an alpha estimate using FC betas

differs significantly from an alpha using only lagged information, then how should this be inter-

preted? One possibility is that the FC beta contains information about a change in conditional

beta not known in advance to investors and correlated with the market innovation εMτ , in which

case the one-sided kernel beta estimate is more appropriate. The other possibility is that the beta

change was known in advance to investors, but the empiricist lacks sufficient instruments to cap-

ture it. Ang and Kristensen (2009) assume this problem away by specifying innovations in beta

to be uncorrelated with market return surprises. To empirically address the issue is more difficult,

requiring either identification of lagged instruments that predict the beta change, or else a struc-

tural approach where one can make inferences about predictability of beta changes, market return

state variables, and any variables that drive payoff nonlinearities. The latter approach is beyond

the frontier of current research due to our limited understanding of the joint dynamics of payoff

nonlinearities with market returns and conditional betas, but can be investigated in future work.

Fortunately, this issue is not a problem in our empirical results. We calculate alphas using both

LC and FC betas as instruments and report the results in Table 10, finding very little difference

with IV alphas that use only LC betas as instruments. This result has an important implication:

The overconditioning bias in momentum is due to a true nonlinearity, where the measurement error
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in contemporaneous realized beta covaries with the surprise in market returns (Cov(εCPβτ , εMτ ) 6= 0).
In order to believe that the uninstrumented CP alpha is correct, one would have to believe that

the IV alphas using only lagged information are incorrect, and also that the IV alphas using

both LC and FC betas are incorrect. We find such a scenario highly unlikely, and see no possible

theoretical explanation for such a pattern.38 By contrast, simple contemporaneous nonlinearities

in momentum returns (De Bondt and Thaler, 1987; Hong, Tu, and Zhou, 2007), the predictability

of momentum beta with formation-period market returns (GM), and the inverse predictability of

market volatility with formation-period market returns (e.g., French, Schwert, and Stambaugh,

1987), combine to explain all of the momentum alphas we have calculated. In a world where all

of these well-documented regularities are important, appropriate instrumentation gives the most

accurate estimate of conditional performance.

4.3.3. Filtering

We can also extract marginal information about conditional beta βt−1it from the contemporaneous

realized beta βCPiτ , while removing variation linearly related to the surprise in market returns. To

do so, we regress the forward-component beta βFCiτ on the standard IV beta that uses only lagged

information, the contemporaneous realized beta, and the unexpected market return as inferred from

a predictive regression of market returns on instruments:

βFCiτ = γ0 + γ1β
IV
iτ + γ2β

CP
iτ + γ3εMτ + uiτ .

The fitted value β̂
FC
iτ includes, in addition to the lagged information βIViτ , any useful information

from βCPiτ while linearly removing measurement error in βCPiτ that covaries with the market surprise

εMτ . The fitted value β̂
FC
iτ is a valid instrument (i.e., will not produce an overconditioning bias) in

the standard IV regression (3.12) under the identifying assumption Cov(εFCβτ , εMτ ) = 0, which is

consistent with the empirical results in the last section. Details of the linear filtering procedure, a

thorough explanation of the identification requirements, and complete empirical results including

an additional test of the identifying assumption are given in Appendix B.

Table 10 includes the final alpha estimates for the filtering procedure (FI) for all strategies.

A strong message emerges. The filtering results are again very close to all other methods that
38This belief would imply that, prior to date τ , investors have information unavailable to the empiricist that predicts

movements in conditional beta and expected market returns i) in opposite directions at the beginning of window τ ,
and ii) that these movements will predictably reverse at the end of window τ . For example, investors would sometimes
have to know that the market return would be unusually high over the next month while the conditional momentum
beta is lower than forecast from a predictive regression, and that these patterns will predictably reverse at the end
of the month. A much simpler and more plausible explanation for our empirical findings is that measurement error
in realized beta is correlated with the unexpected market return due to payoff nonlinearities.
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instrument for either the realized beta or the realized market return. The instrumented conditional

alphas are consistently 20-40% below the unconditional alpha, and in many cases less than half the

level of overconditioned estimates.

4.4. Decomposing the Alpha Biases

We now decompose the differences between alpha estimates into components due to market-timing,

volatility-timing, and overconditioning. We take as a benchmark the one-stage instrumental vari-

ables alpha ᾱIVi calculated with the full set of instruments in Tables 7 and 8, and consider compar-

isons with: i) the unconditional alpha αUCi , and ii) the uninstrumented estimate ᾱCPi .

We first break αUCi − ᾱIVi into market- and volatility-timing components: αUCi − ᾱIVi = αUCiM +

αUCiσ , where α
UC
iM and αUCiσ are defined as in (3.1) and (3.2) substituting βIVτ for conditional beta.

Nearly equivalently, we can separate according to uncentered first (M1) and second (M2) sample

moments of the market: αUCi − ᾱIVi = αUCiM1 + αUCiM2, where α
UC
iM1 =

¡
1 + R̄2M/σ

2
M

¢
Cov

¡
βIViτ , RMτ

¢
and αUCiM2 = −

¡
R̄M/σ

2
M

¢
Cov

¡
βIViτ , R

2
Mτ

¢
as in Proposition 1. The two decompositions are practi-

cally identical,39 and we refer to both as separating into market- and volatility-timing components.

Table 10, Panel A shows the market- and volatility-timing components for each portfolio. Volatil-

ity timing has a larger impact than market timing in all cases. For example, in the 6-0-6 winner

minus loser portfolio volatility-timing contributes 21 basis points per month, relative to a total

alpha difference of 24 basis points per month. In all cases volatility-timing biases upward uncondi-

tional winner alphas and biases downward unconditional loser alphas. In other words, unconditional

momentum alphas are inflated by volatility-timing.

The importance of volatility timing in momentum is consistent with prior evidence that the for-

mation period market return (i) positively (negatively) predicts the winner (loser) holding-period

beta (GM), and (ii) negatively predicts holding-period volatility (e.g., French, Schwert, and Stam-

baugh, 1987). Combining these regularities explains the negative (positive) volatility-timing for

winners (losers) in Panel A, depicted in Figure 2.

We can also decompose the difference between the overconditioned alpha ᾱCPi , formed from the

contemporaneous realized beta, and the IV conditional alpha, following the logic of Section 2:

ᾱCPi1 − ᾱIVi = −Cov
³
βCP−IViτ , RMτ

´
−
³
β̄
CP−IV
iτ

´
R̄M

= −Cov
³
βCP−IViτ , εMτ

´
− Cov

³
βCP−IViτ , R̄Mτ

´
−
³
β̄
CP−IV
iτ

´
R̄M , (4.1)

39The two decompostions differ only due to the allocation of a term involving covariation of beta with R̄2M , i.e.,
αUCiM = αUCiM1 −

¡
R̄M/σ

2
M

¢
Cov

¡
βIViτ , R̄

2
Mτ

¢
. Empirically, −

¡
R̄M/σ

2
M

¢
Cov

¡
βIViτ , R̄

2
Mτ

¢
≈ 0, as discussed in Section 2

and confirmed in Table 10.
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where R̄Mτ ≡ Eτ−1RMτ , εMτ ≡ RMτ −Eτ−1RMτ , and βCP−IViτ ≡ βCPiτ −βIViτ . The first component

captures the covariance of the noise in CP beta with the surprise in market returns, and reflects

overconditioning. The second part measures covariation of the beta difference with the predictable

part of market returns, and may represent useful performance-related information in the CP beta

not captured by the IV beta. Our earlier results showed that linear filtering to extract additional

information in the CP beta produced little change relative to the IV beta, and hence we expect the

second term to be small. The final term is the difference in the average betas.

Panel B of Table 11 shows the decomposition (4.1) for all momentum portfolios. The covariance

between unexpected market returns and the difference of CP and IV betas is large and negative for

winners (−0.65), and almost zero for losers (−0.08), consistent with the beta asymmetries reported
in Section 4. The main message of Panel B is reenforced in Figure 3, which shows that the over-

conditioning bias from using an uninstrumented contemporaneous realized beta is overwhelmingly

explained by two facts: i) losers have similar loadings on negative and positive market news, and

ii) winners are much more heavily exposed to negative versus positive market surprises.

5. Conclusion

We show that overconditioning — a new concept introduced in this paper — and volatility-timing can

plausibly bias conditional CAPM alphas by several times more than market-timing. Empirically,

negative volatility-timing substantially inflates the unconditional momentum alpha, and occurs

because the formation-period market return positively predicts holding period beta, while also

negatively predicting holding-period market volatility.

Attempting to incorporate information about time-varying risk by using a contemporaneous

realized beta without instrumentation produces an overconditioning bias related to nonlinearity in

the relation between asset and factor returns. In momentum, the overconditioning bias is large and

inflates alpha because the strategy loads much more heavily on negative versus positive market

news. We propose a variety of instrumental variables estimators, using lagged realized betas, two-

sided kernels, the contemporaneous realized beta while instrumenting for the market return, and

filtering. Our new estimates of momentum alpha correct the volatility-timing and overconditioning

biases, and are significantly below both unconditional and overconditioned estimates.

We see several directions in which this literature should continue to develop. 1) More research

can be done to understand the dynamics of return nonlinearities, in particular joint dynamics with

conditional beta and the conditional mean and variance of market returns. Such advances would

permit structural estimation of conditional factor model alphas, complementing the reduced form
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approach of this paper. 2) We calculate alphas under the conditional CAPM, where there is no

reward for payoff nonlinearities. If nonlinearities carry a premium (e.g., Kraus and Litzenberger,

1973; Bawa and Lindenberg, 1978) then our estimates of risk-adjusted momentum performance

represent an upper bound — returns such as momentum that are concave in the realized market

(equivalently negative coskewness) should command higher expected returns than predicted by the

conditional CAPM, consistent with the results of Harvey and Siddique (2000). Future research can

improve conditional performance evaluation for models where return nonlinearities earn a premium,

for example by incorporating realized betas as instruments and attempting to better model the

dynamics of return nonlinearities. 3) The concepts and methodologies developed in this paper in

the context of a style portfolio are also applicable to managed portfolios, with additional challenges

because of the incentives of the fund manager to manipulate alpha through unobservable dynamic

trading strategies (Goetzmann, Ingersoll, Spiegel, and Welch, 2007). In particular, volatility-timing

is easier to implement than market-timing, and has been documented in mutual funds (Busse, 1999).

Given our result that volatility-timing has a larger potential impact on alpha than market-timing,

the managed portfolio setting is a natural one in which to extend this research.

32



Appendix

A. Proofs of Propositions

The following lemma is used to simplify the proofs:

Lemma 1: For any three random variables X, Y , and Z,

Cov (X,Y Z) = Cov (XY,Z)−E (X)Cov (Y,Z) +E(Z)Cov(X,Y ).

Proof of Lemma 1: Cov (X,Y Z) = E (XY Z)−E (X)E (Y Z) = Cov (XY,Z)+E (XY )E(Z)−
E(X)E(Y Z), which leads to the result by applying the definition of covariance.

Proof of Proposition 1: To derive the beta bias, note that βUCi = Cov
¡
βt−1it RMt, RMt

¢
/σ2M .

Applying Lemma 1, βUCi =
£
σ2M β̄i − R̄MCov

¡
βt−1it , RMt

¢
+ Cov

¡
βt−1it , R

2
Mt

¢¤
/σ2M , which reduces

to the beta bias in the Proposition. The alpha bias follows.

Proof of Proposition 2: The conditional difference is

E
¡
α̂it − αt−1it

¯̄
Ft−1

¢
= E

³
Rit − β̂itRMt − E (Rit| Ft−1) + βt−1it R̄Mt

¯̄̄
Ft−1

´
= βt−1it R̄Mt − E

³
β̂it

¯̄̄
Ft−1

´
R̄Mt − Cov

³
β̂it, RMt

¯̄̄
Ft−1

´
. (A.1)

Rearranging and simplification gives the result. The unconditional result follows immediately from
taking the unconditional expectation.

Proof of Proposition 3: Recall the definition αs ≡ E (Ri| s)− βsE (RM | s). Taking expectations
and using the CAPM yields:

E
¡
αSi
¢
≡ R̄i − E

¡
βSi
¢
R̄M −Cov

£
βSi ,E (RM |S)

¤
=

£
βi − E

¡
βSi
¢¤
R̄M −Cov

£
βSi ,E (RM |S)

¤
.

If S contains information about R then without loss of generality assume E (RM |G) > E (RM |B).
Since βGi 6= βBi then Cov

£
βSi ,E (RM |S)

¤
will not be zero and E

¡
αSi
¢
will generally be biased.

Proof of Proposition 4: Equation (2.2) provides a general form of the alpha decomposition:

αUC = Cov
¡
βτ−1it , RMt

¢
−
¡
βUC − β̄

¢
R̄M = αUCM,direct + αUCloading.

The unconditional beta from Proposition 1 can be further decomposed:40

βUC = β̄ −
¡
R̄M/σ

2
M

¢
Cov

¡
βτ−1it , RMt

¢
+Cov

¡
βτ−1it , R̄2Mt

¢
/σ2M + Cov

¡
βτ−1it ,σ2Mt

¢
/σ2M . (A.2)

In our model, all parts of these expressions can be analytically calculated using Stein’s Lemma and
repeated application of Lemma 1. Note that RMt can be expressed in terms of an i.i.d. standard
40Equation (A.2) is equivalent to equation 2 in LN. Note that Cov(βτ−1it , RMt) = Cov(βτ−1it , R̄Mt) since

εMt is uncorrelated to βτ−1it . Demeaning the market premium in the second term, Cov(βτ−1it , R̄2Mt) =

Cov(βτ−1it ,
¡
R̄Mt − R̄M

¢2
) + 2R̄M (Covβ

τ−1
it , R̄Mt), immediately results in the LN relation: βUC = β̄ +

(R̄M/σ
2
M)Cov(β

τ−1
it , R̄Mt) + Cov(β

τ−1
it ,

¡
R̄Mt − R̄M

¢2
)/σ2M + Cov(βτ−1it ,σ2Mt)/σ

2
M .
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normal innovation ηt, i.e. RMt = R̄Mt + σMtηt.

V ar(RMt) = V ar(R̄Me
λMXτ−1−1

2
λ2M + σ̄Me

1
2
λσYτ−1−1

4
λ2σηt)

= R̄2M(e
λ2M − 1) + σ̄2M (A.3)

Cov(βτ−1it , RMt) = Cov(β̄ + bxXτ−1 + byYτ−1, R̄Me
λMXτ−1−1

2
λ2M + σ̄Me

1
2
λσYτ−1−1

4
λ2σηt)

= λM R̄M (bx + byCov (X,Y )) (A.4)

Cov(βτ−1it , R̄2Mt) = Cov(β̄ + bxXτ−1 + byYτ−1, R̄
2
Me

λM (2Xτ−1−λM ))

= 2λMe
λ2M R̄2M (bx + byCov (Xτ−1, Yτ−1)) (A.5)

Cov(βτ−1it ,σ2Mt) = Cov(β̄ + bxXτ−1 + byYτ−1, σ̄
2
Me

λσYτ−1− 1
2
λ2σ)

= λσσ̄
2
M(by + bxCov(Xτ−1, Yτ−1)) (A.6)

The beta bias is βUC − β̄ = λM(kμ/σ
2
M) (bx + byCov (X,Y )) + λσ(σ̄

2
M/σ

2
M) (by + bxCov (X,Y )),

where kμ ≡ R̄2M(2eλ
2
M − 1) > 0 and Cov (X,Y ) = ρεσxσy/

¡
1− ϕxϕy

¢
.

Proof of Proposition 5: This decomposition isolates components that relate to covariation with
R̄Mt (market-timing) and σ2Mt (volatility-timing). Substituting (A.3)—(A.6) into (3.1) and (3.2),
noting that Cov

¡
βτ−1it , R̄2Mt

¢
= 2R̄Me

λ2MCov
¡
βτ−1it , RMt

¢
, and simplifying gives (3.9) and (3.10).

Proof of Proposition 6: Conditioning on RMt ≥ R̄Mt, the return on asset i is the random
variable ατ−1

it + βτ−1it RMt − ∆βσMtεMt + ∆βσMt
p
2/π + εit = ατ−1

it + ∆β(σMt
p
2/π + R̄Mt) +¡

βτ−1it −∆β

¢
RMt + εit. The proof for RMt < R̄Mt is analogous.

B. Details of Calculations and Empirical Procedures

B.1. The Overconditioning Example (Section 2.2, Figure 1)

We define four possible market payoffs R̄M − kx/2, where k = −3,−1, 1, 3. We solve for αGi and
αBi and the returns of asset i in the four states. Conditional on each state, βsi and αsi are the
conditional beta and intercept. The unconditional CAPM must hold R̄i = βiR̄M . We impose βi =¡
βBi + βGi

¢
/2. Setting Std (RM) = .05 and R̄M = .01, we getRM (Ω) ≡ [−0.057,−0.012, 0.032, 0.077]

and Ri (Ω) = [−0.068,−0.001, 0.044, 0.066].

B.2. The Link Between Loading Mismeasurement and Volatility Timing

To provide general intuition about why the loading measurement alpha is tightly linked to volatility
timing, consider the following simple example. Suppose a constant market risk premium, which
rules out market timing. At τ − 1 investors observe one of two equally likely states {v, nv} ∈ Fτ−1
with market volatility strictly higher in the volatile than the non-volatile state σ2v > σ2nv. Assume
that in different market-volatility states, an asset’s conditional betas {βv,βnv} may differ. The
unconditional beta then satisfies βUC = (σ2v/σ

2
M)βv/2 + (σ

2
nv/σ

2
M)βnv/2. The unconditional beta

exceeds average beta β̄ = βv/2 + βnv/2 if and only if βv > βnv, and is less than average beta if
and only if βv < βnv. Thus, returns from high volatility periods are more influential in a simple
OLS time-series regression. Positive volatility timing produces unconditional betas that overstate
average portfolio risk and understate unconditional alphas, whereas negative volatility timing yields
the opposite effect.41 Considering the high observed predictability of market volatility and the
41The volatility-timing example is easily generalized and relates to a much broader statistics literature that seeks

to identify subsets of data with high influence. For example, a common measure of the influence that a given pair of
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large alpha impacts of volatility timing demonstrated in Table 2, this general intuition shows that
volatility timing should be taken into account whenever evaluating investment performance.

B.3. Exact Filtering and Linear Filtering (Section 3)

Exact Filtering: Let Xτ ≡ [Xτ , Yτ ]. We assume that X0 is drawn from the unconditional dis-
tribution of states, i.e., [X0, Y0] are drawn as bivariate standard normals with correlation ρu ≡
ρεσxσy/

¡
1− ϕxϕy

¢
. The empiricist observes Rit and RMt, t > 0 and updates conditional proba-

bilities. Let Gt ≡ {Ris, RMs|s ≤ t} and Gτ ≡ {Ris, RMs|s ≤ τ (s)}. We filter using Bayes’ rule, first
using the state equation:

f (X1|G0) =
Z
f (X1|X0) f (X0|G0) dX0 (B.1)

and then updating after observing new data:

f (X1|G0, RM1) = f (RM1|X1,G0) f (X1|G0) /f (RM1|G0) (B.2)

= f (RM1|X1) f (X1|G0) /
Z
f (RM1|X1) f (X1|G0) dX1,

f (X1|G0, RM1, Ri1) = f (Ri1|X1,G0, RM1) f (X1|G0, RM1) /f (Ri1|G0, RM1) (B.3)

= f (Ri1|X1, RM1) f (X1|G0, RM1) /
Z
f (Ri1|X1, RM1) f (X1|G0, RM1) dX1.

For t > 1, the observation equations (B.2) and (B.3) are iterated within a month, while the state
equation (B.1) is updated at the end of each month.

To implement the filtering equations we use recursive numerical integration as in Fridman and
Harris (1998), building on Kitagawa (1987). We discretize the two-dimensional state-space [Xτ , Yτ ]
into 31 points in each dimension, and find little change in the accuracy of the filter or the associated
alphas relative to coarser discretizations using as little as half as many integration points in each
dimension. This confirms that the calculations are more than sufficient to approximate well the
exact non-linear filtering equations.

Linear Filtering:We can also implement computationally simpler linear filtering using realized
beta. Assume the following state equation and observation equation:

βττ+1 = ρβτ−1τ + (1− ρ) β̄ + ετ+1 (B.4)

βCPτ = βτ−1τ + a(RMτ − R̄Mτ ) + et, (B.5)

where εt and et have mean zero, variances σ2ε and σ
2
e, and are independent. The state equation (B.4)

applies exactly to the model in Section 3 if φz = φy by setting ρ = φx = φy.
42 The observation

equation allows the noise in realized beta to be correlated with the market return surprise, as will
occur when payoffs are nonlinear.

For given parameter vector
©
ρ, β̄, a,σ2ε,σ

2
e

ª
we can recursively calculate the conditional probabil-

ities of the unobserved state variable βτ−1τ . Let Eβ
τ |τ∗ ≡ E(β

τ−1
τ |Gτ∗) and V ar

β
τ |τ∗ ≡ V ar(β

τ−1
τ |Gτ∗).

independent and dependent variables have on slope coefficients is the statistic DFBETASi, (see, e.g., Belsley, Kuh,
and Welch, 1980), which measures the degree to which the unconditional slope coefficient changes when datapoint i
is dropped . This statistic is driven by the extent to which the dependent variable is an outlier and the size of the ith

diagonal of the (X 0X)−1 matrix associated with the independent variables.
42When the state variables X and Y have different degrees of persistence, then additional lags of investor-

conditioned beta can be added to the state equation (B.4).
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We recursively update the system

Eβ
τ |τ−1 = ρEβ

τ−1|τ−1 + (1− ρ) β̄

V arβτ |τ−1 = ρ2V arβτ−1|τ−1 + σ2ε

Eβ
τ |τ = ωτE

β
τ |τ−1 + (1− ωτ ) (β

CP
τ − a(RMτ − R̄Mτ ))

ωτ = σ2e/(V ar
β
τ |τ−1 + σ2e)

V arβτ |τ = ω2τV ar
β
τ |τ−1 + (1− ω)2 σ2e,

which is initialized with Eβ
1|0 = β̄, V arβ1|0 = σ2ε/

¡
1− ρ2

¢
.

In practice the parameter vector
©
ρ, β̄, a,σ2ε,σ

2
e

ª
must be estimated which is easily implemented

using GMM or simple least squares. Define the forecasting errors uτ = βCPτ −E
β
τ |τ−1 whose variance

is V ar (uτ ) = V arβτ |τ−1 + σ2e. We choose the parameters
©
ρ, β̄, a,σ2ε,σ

2
e

ª
to minimize the sum of

squared forecasting errors u2τ .
43

B.4. Momentum Portfolio Construction

At the beginning of calendar month τ , we sort stocks into deciles based on their return over the
formation period τ−d−6 to τ−d−1. To be included in the sort, stocks must have (i) valid monthly
returns on the CRSP database over the entire formation period, (ii) at least 12 additional valid
monthly returns in the thirty months prior to formation, (iii) at least 15 non-missing daily returns
in each month of the formation period. Immediately following the sort, the winner portfolio (W)
makes a fixed $1 investment with equal weights in the top decile stocks, and sells stocks that were
added to the portfolio at the beginning of month τ−h. The loser portfolio (L) is defined by similarly
timed investments and liquidations in the bottom decile stocks. Momentum (WL) profits are the
difference between W and L returns. The portfolios are seasoned by implementing the strategies
with holding period h for h− 1 months prior to the sample start date.

B.5. A GMM Test of the Difference in Alphas

We compare the alphas of a long-short position in portfolios i = 1, 2 under two different performance
specifications j = 1, 2. Let Ri =

£
1T Xij

¤ £
αij βij

¤0
+ εij , where 1T , Ri, and εij are column

vectors of length T , αij are scalars, Xij are T by (kij − 1) matrices, and βij are column vectors of
size kij − 1.

Define the moment conditions for asset i

gi ≡ E

⎡⎢⎢⎣
R1 − α11 −X11β11

(R1 − α11 −X11β11)0X11
R1 − α12 −X12β12

(R1 − α12 −X12β12)0X12

⎤⎥⎥⎦ ,
the coefficient vector bi ≡ [ α11 β011 α12 β012 ]

0, and the matrix

di =
∂gi
∂b

=

∙
D11 0k11,k12
0k12,k11 D12

¸
,

43An additional moment is needed to separately identify σ2ε and σ2e, but this has no impact on predicted or filtered
betas in a long sample after conditional variance levels reach their steady state.
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where 0n1,n2 denotes a matrix of zeros of dimensions n1 by n2, and

Dij = −
"

1 E (Xij)
E
³
X0ij

´
E
³
X0ijXij

´ #

are symmetric squared matrices of size kij . Let g = [ g01 g02 ]
0, b = [ b01 b02 ]

0, and d =
∙
d1 0
0 d2

¸
.

Using standard GMM results, V ≡ V ar(b̂) = d−1Sd−1/T, where S =
P∞
k=−∞ E(utu0t−k) and

ut = [ ε11t ε11tX11t ε12t ε12tX12t ε21t ε21tX21t ε22t ε22tX22t ]
0.We estimate V̂ = d−1Ŝd−1/T

following Newey and West (1987) with Bartlett kernel weights ω (k,m) = 1 − k/(m + 1). Let
αj ≡ α1j − α2j . The test statistic α̂2 − α̂1 is asymptotically normally distributed with a mean of
α2 − α1 and a variance of c0V c, where c ≡ [ 1 00k11−1 −1 00k12−1 −1 00k21−1 1 00k22−1 ]

0.
Applying this methodology to test the difference between conditional and unconditional mo-

mentum alphas, we set R1 = RW , R2 = RL, X11 = X21 = RM , X12 = (RM10k12) ∗ [ 1T ZW ], and
X22 = (RM1

0
k22
) ∗ [ 1T ZL ], where ∗ denotes element-by-element multiplication. To test the null

hypothesis that the conditional alpha is greater than or equal to the unconditional alpha, we use a
one-tailed test. We implement the Newey-West procedure with m = 5. Our results are unaffected
by other choices of m ≤ 12.

B.6. Filtering: Application to Momentum Strategies

Consider the predictive regression

βFCiτ = γ0 + γ1β
IV
iτ + γ2β

CP
iτ + γ3εMτ + uiτ = γ0 + γ1β

IV
iτ + γ2

¡
βτ−1iτ + εβτ

¢
+ γ3εMτ + uiτ ,

where εMτ ≡ RMτ −Eτ−1 (RMτ ) and εβτ represents measurement error. Denoting the fitted values

β̂
FC
iτ , we run the second-stage performance regression Riτ = αFIi + (δ0 + δ1β̂

FC
iτ )RMτ + νFIiτ , where

βFIiτ = δ0 + δ1β̂
FC
iτ and αFIi are respectively the filtered conditional beta and mean alpha. The key

to this procedure is the first-stage. The IV and CP betas should have useful information about the
forward beta (γ1, γ2 > 0). However, the CP beta contains measurement error εβτ potentially corre-
lated with the contemporaneous market innovation εMτ . Under reasonable assumptions, discussed
in detail below, including εMτ in the regression removes noise in the CP beta that is correlated
with the market innovation and not useful for predicting the forward beta.

Table A.3. presents complete results. The IV beta used as an input in this table is obtained
from the one-step instrumental variables procedure with all instruments (Tables 7 and 8). Panel
A shows results for 6-0-6. Specification (1) imposes γ2 = γ3 = 0, and shows that the IV beta is
an unbiased and efficient predictor of the forward beta (γ0 ≈ 0, γ1 ≈ 1), even though it uses no
information from month τ . The second-stage alpha is by construction equal to the IV1 alpha of 0.57
(see Table 7 regression (7)). In (2), adding the CP beta slightly increases the R2, and the coefficients
on both regressors are significant with weights favoring IV relative to CP by about 9:1. Using the
CP beta introduces the possibility of overconditioning, and we cannot be sure to what extent the
increase in the second-stage alpha (to 0.62) should be attributed to improved information about the
conditional beta or overconditioning. In (3), the IV beta and market surprise εMτ are included but
the CP beta is omitted (γ2 = 0). The market surprise is not significant in the first-stage regression
for either winners or losers. By contrast, in the full specification (4), the coefficient on εMτ is about
zero for losers, but positive and significant for winners, revealing that when market returns are
high, the forward beta is larger than suggested by the CP beta alone, and when market returns are
low the opposite holds. Thus, measurement error in the CP beta negatively relates to the market
return surprise, consistent with the strong beta asymmetry of the winner portfolio. Under the full
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specification (4), the alpha falls to 0.48.
In Panels B and C we abbreviate the analysis for the 6-1-1 and 6-1-6 strategies by showing

results only for the full specification. In both cases, filtering similarly produces a small drop in
alpha relative to the base IV results from the previous section.

B.6.1. Identification Requirements

We establish conditions under which β̂
FC
iτ is orthogonal to the market surprise εMτ . Let

βFCiτ ≡ E(βFCiτ |βτ−1iτ ) + δFCβτ + εFCβτ ,

where δFCβτ is an innovation to conditional beta and εFCβτ is measurement error (i.e., E(δFCβτ |Fτ ) =
δFCβτ and E(εFCβτ |Fτ ) = 0 under investor information Fτ ). We show that corr(β̂

FC
iτ , εMτ ) = 0 if

corr(δFCβτ , εMτ ) = 0.
Consider the linear relation βFCiτ = ρβCPiτ + γ̂εMτ + u

FW
iτ , where ρ is any constant and γ̂ is

the OLS estimate. We allow that the measurement error in βCPiτ is correlated with εMτ : βCPiτ =
βτ−1iτ + aεMτ + eiτ .Using corr(δFCβτ , εMτ ) = 0, we obtain var(εMτ )γ̂ = cov(βFCiτ − ρβCPiτ , εMτ ) =

cov(−ρβCPiτ , εMτ ) = −ρa(var(εMτ )). Thus, for any ρ, γ̂ converges to −ρa, which guarantees that
β̂
FW
iτ and in turn the filtered beta β̂

FI
iτ are uncorrelated with the market surprise εMτ . The procedure

thus permits information in the CP beta to be incorporated into the performance measure while
eliminating overconditioning.

The identifying assumption corr(δFCβτ , εMτ ) = 0 is plausible for the FC beta. The empirical
results obtained in Section 4.3.2 support this assumption. Further, regression (3) in Table A.3.
indicates that the market surprise has little ability to independently predict the forward-component
beta βFCiτ of momentum portfolios, consistent with the assumption.

B.7. The Conditional 3-Factor Model and Momentum Performance

To obtain conditional FF performance measures, in each non-overlapping window θ of length N ∈
{1, 3, 6} months, we run a Fama-French daily regression for each factor j ∈ {MKT,HML,SMB}:
Rit = αCPRDiθ /n+

P
j(βij1θFjt + βij2θFj,t−1 + βij3θ

P4
k=2 Fj,t−k/3) + εit using the same structure

of Dimson adjustments as in our CAPM results.44 Denoting βCPijθ ≡ βij1θ+βij2θ+βij3θ as the sum
betas from this regression, we calculate buy-and-hold and rescaled daily alphas for contemporaneous
and lagged betas analogously to the conditional CAPM.

We obtain partial time-series for the three factors and historical book equity values from Ken
French’s website. We create the pre-1963 daily factors following the procedure outlined by Fama
and French (1993). Table A.1 shows for each momentum strategy the FF alphas obtained from
the methods UC (column i), CP (ii-iii), LP (iv-v), and LC (vi-vii). Consistent with prior research
(e.g., Fama and French, 1996), UC risk adjustment produces larger momentum alphas under the
FF model than the CAPM. For 6-0-6 at a one month horizon, the FF winner alpha is lower than
the CAPM alpha reported in Table 6 (0.44 vs. 0.57), the loser alpha is lower by a greater margin
(−0.65 vs. −0.24), and the net WL alpha increases by 0.29 to 1.10. As in the conditional CAPM,
overconditioning is a significant problem. For 6-0-6, the difference between CP and LP alphas
exceeds 1.0 for one month windows, is about 0.6 for N = 3, and ranges from 0.05 to 0.36 for N = 6.

To calculate LC loadings and performance measures we again use either six months of lagged
daily data (LC6) or 36 months of lagged monthly data (LC36) for each component in the W and
44Eliminating the Dimson lags, or alternatively adding a lead to account for asynchronous trading delays in the

relatively illiquid long side of HML and SMB, does not substantially alter our results.
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L portfolios, using Dimson sum betas for LC6 as previously. The LC6 alphas (column vi) are
moderately smaller than the LPBH alphas (0.71 vs. 0.79 for 6-0-6) and considerably smaller than
UC (1.10). The LC36 method (vii) further reduces alphas.

To implement the IV method, we focus on one-step instrumentation. The conditional regression
is Riτ = αIV 1i +

P
j βijFjτ ([ 1 Zj,τ−1 ]0) + εiτ , where j ∈ {MKT,HML,SMB} are the Fama-

French factors. Table A.2 presents results for 6-0-6. The unconditional regression (1) shows that
loadings are uniformly larger for L than W (1.21 vs. 1.00 for MKT, 0.51 vs −0.06 for HML, and
1.52 vs. 0.88 for SMB). The standard instruments (2) appear especially useful for predicting HML
loadings. The regression R2 improve from 85.8 to 88.5 for winners, and from 82.3 to 83.4 for
losers. The winner minus loser alpha falls to 0.97 from the unconditional 1.10. Instrumenting with
the lagged component loadings (3), both LC6 and LC36 are always highly significant for W with
roughly equal weightings for all factors. For L, the weightings are higher on LC36 than LC6, and the
latter are insignificant for HML and SMB. Relative to (1) and (2), the R2 improve considerably,
increasing to 92.9 and 86.0 for W and L. The alphas further attenuate toward zero for winners
and losers, and the winner minus loser alpha is 0.90. Combining the standard instruments and LC
betas (4), the significance of the standard instruments generally moderates for SMB and HML,
and is mixed for MKT. The lagged component coefficients are more stable. Relative to (3), the R2

improves marginally for winners and is approximately constant for losers. The alphas for winners
and losers attenuate slightly towards zero, and the winner minus loser alpha is 0.87.

Results for the 6-1-1 and 6-0-6 strategies are similar and are omitted for brevity. We conclude
that proper use of conditioning information reduces three-factor momentum performance by a
statistically significant 20% to 25%, while overconditioned estimates can overstate performance by
more than 2.5 times.
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Table 1. The Unconditional Alpha Bias

A. Market-timing
bx

λM 0.2 0.4 0.6 0.8 1.0
0.1 0.01 0.03 0.04 0.05 0.06
0.2 0.03 0.05 0.08 0.10 0.13
0.3 0.04 0.08 0.11 0.15 0.19
0.4 0.05 0.10 0.15 0.20 0.25
0.5 0.06 0.13 0.19 0.25 0.31

B. Volatility-timing
by

λσ -0.2 -0.4 -0.6 -0.8 -1.0
0.8 0.10 0.20 0.30 0.40 0.50
1.0 0.13 0.25 0.38 0.50 0.63
1.2 0.15 0.30 0.45 0.60 0.76
1.4 0.18 0.35 0.53 0.71 0.88
1.6 0.20 0.40 0.60 0.81 1.01
Notes: This table reports unconditional alphas (in % monthly), cal-
culated analytically as in Proposition 6, from the calibrated dynamic
CAPM described in equations (3.5)-(3.8) and (3.11). The model pa-
rameters are R̄M = 0.0003, σ̄M = 0.01, and ∆β = 0. In Panel A,
only information about the conditional mean of market returns is rele-
vant, i.e., λσ = 0, while Panel B only considers information about the
conditional market volatility, i.e., λM = 0.

Table 2. The Overconditioning Bias

∆β Daily Betas Alpha Bias (αRD, %/m)
β− β+ αUC1 ᾱCP1 ᾱCP3 ᾱCP6 ᾱCP12

0.00 1.00 1.00 0.00 -0.00 0.00 -0.00 -0.00
0.20 1.20 0.80 0.00 0.17 0.05 0.03 0.01
0.50 1.50 0.50 0.00 0.42 0.13 0.07 0.03
1.00 2.00 0.00 0.00 0.84 0.27 0.13 0.07

-0.20 0.80 1.20 0.00 -0.17 -0.05 -0.03 -0.01
Notes: This table shows the effects of changes in ∆β in the unconditional version of
the calibrated dynamic CAPM (λM = λσ = bx = by = 0). The model parameters are
R̄M = 0.0003, σ̄M = 0.01, σi = σM , and β̄ = 1. The reported statistics are obtained
by simulating 108 months of n = 21 daily returns. The reported rescaled daily (RD)
alphas are in percent per month. Risk adjustment is done either unconditionally (UC)
or using the contemporaneous portfolio method (CP) using non-overlapping windows of
length N = 1, 3, 6 or 12 months. The buy-and-hold (BH) alphas are virtually identical
to the RD alphas and are not reported.



Table 3. The Overconditioning vs. Underconditioning Tradeoff

Market Parameters Stock Parameters
λM λσ ρε bx by ∆β N = 1 N = 3 N = 6

(1) Overconditioning Only UC 0.00
0.30 0.60 0.00 0.00 0.00 0.50 CP 0.42 0.14 0.07

LP 0.00 0.00 0.00

(2) Market-Timing Only UC 0.09
0.30 0.60 0.00 0.50 0.00 0.00 CP 0.00 0.01 0.02

LP 0.01 0.03 0.04

(3) Volatility-Timing Only UC 0.38
0.30 0.60 0.00 0.00 -0.50 0.00 CP 0.00 0.03 0.06

LP 0.00 0.03 0.06

(4) Market- and Volatility-Timing, No Nonlinearities UC 0.47
0.30 0.60 0.00 0.50 -0.50 0.00 CP 0.00 0.04 0.08

LP 0.01 0.06 0.10

(5) Market- and Volatility-Timing, Nonlinearities UC 0.47
0.30 0.60 0.00 0.50 -0.50 0.50 CP 0.35 0.16 0.14

LP 0.01 0.06 0.10

(6) Market- and Volatility-Timing, Nonlinearities, ρε > 0 UC 0.23
0.30 0.60 0.50 0.50 -0.50 0.50 CP 0.35 0.14 0.10

LP 0.00 0.03 0.05

(7) Market- and Volatility-Timing, Nonlinearities, ρε < 0 UC 0.70
0.30 0.60 -0.50 0.50 -0.50 0.50 CP 0.35 0.18 0.18

LP 0.02 0.08 0.16
Notes: This table reports buy-and-hold alphas (in % monthly) from the calibrated dynamic CAPM with
parameters R̄M = 0.0003, σ̄M = 0.01, σi = σM , and β̄ = 1. The persistence of the conditioning variables
X and Y is ϕx = ϕy = 0.9. Estimates are obtained from 108 months of n = 21 daily returns. Alphas are
rescaled to monthly equivalents for data windows of N = 1, 3, or 6 months, and the performance measures
UC (unconditional), CP (contemporaneous risk adjustment), and LP (lagged risk adjustment).
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Table 5. Momentum Summary Statistics

6-0-6 6-1-1 6-1-6
W L WL W L WL W L WL RM R2

M

A. Mean Returns
daily 1.18 0.35 0.84 1.26 0.62 0.64 1.30 0.12 1.18 0.59 22.77
1 month 1.30 0.76 0.54 1.38 1.13 0.24 1.43 0.52 0.91 0.62 30.15
3 month 1.40 0.88 0.52 1.46 1.29 0.18 1.54 0.62 0.91 0.64 37.08
6 month 1.42 0.79 0.64 1.49 1.23 0.26 1.57 0.53 1.04 0.62 29.21

B. Unconditional and Average CP Betas
βUC , 1 month 1.17 1.61 -0.43 1.16 1.67 -0.52 1.20 1.57 -0.37 - -
βUC , daily 1.16 1.38 -0.22 1.15 1.41 -0.26 1.17 1.36 -0.19 - -
βCP 1.14 1.16 -0.01 1.14 1.19 -0.05 1.15 1.14 0.00 - -

C. Correlation of CP Betas, RM and R2
M with Formation Period Market Return

Corr(·,RU6) 0.20 -0.15 0.30 0.26 -0.22 0.37 0.15 -0.10 0.21 0.01 -0.20

D. Asymmetric Betas
β− 1.51 1.31 0.20 1.52 1.29 0.23 1.50 1.31 0.19 - -
β+ 0.89 1.19 -0.29 0.88 1.26 -0.38 0.93 1.15 -0.22 - -
β− − β+ 0.61 0.12 0.49 0.64 0.04 0.60 0.57 0.16 0.41 - -
Notes: This table reports summary statistics for momentum portfolios and the market excess returns over
the sample period from January 1930 to December 2005. Daily returns are computed as average daily returns
scaled by average number of days in one month. 1-, 3-, and 6-month returns are computed by compounding
monthly returns in overlapping windows of N = 1, 3, 6 months and dividing by N . Squared market returns are
computed in a similar manner. Returns in Panel A are reported in percent, and squared market returns are in
percent squared. All returns are in excess of the T-bill rate from Ken French’s website. In Panel B, 1-month
unconditional (UC) betas are the slope coefficients from market model regressions on monthly data. Daily
unconditional betas are computed as the sum of the slope coefficients from regressing daily portfolio excess
returns on market excess return, its lag, and the average of lags 2 through 4 of market excess return. βCP are
average loadings from market model regressions of daily returns in each calendar month, computed using the
same lag structure as daily UC betas. Panel C shows correlations of 6-month (τ − 6 to τ − 1) market return
with contemporaneous portfolio momentum betas, market return and squared market return in month τ . In
Panel D, β− and β+ are sum of the slope coefficients from regressions of portfolio excess return on market
excess return, its lag, and the average of lags 2 through 4 of market excess return. β− and β+ are calculated
in every calendar year using daily data and then averaged.
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Table 7. Momentum CAPM Alphas: IV Method, 6-0-6

IV2 (Two-Step) IV1
Stage 1 Stage 2

Beta Regression Return Regression
γ0 βLC6 βLC36 RU6 RU36 DY TS TB DS R2 αIV 2 φ0 φ1 R2 αIV 1 R2

(1) W 1.14 0.57 1.02 72.1 0.57 72.1
[60] [4.3] [48] [4.3]

L 1.16 -0.24 1.39 60.9 -0.24 60.9
[50] [-1.0] [38] [-1.0]

WL 0.81 0.81

(2) W 1.41 -4.58 1.13 -23.7 -1.89 2.85 0.53 -0.12 1.20 73.8 0.56 74.1
[21] [-3.4] [0.7] [-2.7] [-0.6] [4.1] [-0.7] [7.9] [4.3]

L 1.39 -3.14 -7.93 -86.9 18.2 9.73 -0.17 0.51 0.79 62.7 -0.14 63.3
[18] [-2.0] [-4.2] [-8.4] [5.3] [-0.8] [3.1] [6.7] [-0.6]

WL 0.70 0.69

(3) W 0.19 0.77 26.7 0.52 0.13 1.00 76.4 0.52 76.4
[3.6] [18] [4.3] [1.6] [13] [4.3]

L 0.31 0.70 23.0 -0.12 0.51 0.89 63.0 -0.12 63.0
[5.5] [17] [-0.5] [3.2] [7.1] [-0.5]

WL 0.65* 0.65*

(4) W 0.26 0.68 20.1 0.50 0.02 1.06 76.0 0.50 76.0
[4.3] [15] [4.0] [0.2] [12] [4.0]

L 0.06 0.80 17.9 -0.14 0.19 1.16 63.2 -0.14 63.2
[0.7] [14] [-0.6] [1.0] [7.6] [-0.6]

WL 0.64* 0.64*

(5) W 0.06 0.59 0.28 28.5 0.51 0.17 0.96 76.7 0.51 76.7
[1.0] [10] [4.8] [4.2] [2.1] [14] [4.2]

L 0.10 0.53 0.30 24.1 -0.12 0.42 0.96 63.3 -0.12 63.4
[1.3] [8.6] [3.7] [-0.5] [2.6] [7.7] [-0.5]

WL 0.62* 0.63*

(6) W 0.10 0.61 0.22 0.28 -0.01 28.7 0.50 0.21 0.94 77.0 0.48 77.1
[1.5] [11] [3.3] [2.1] [-0.3] [4.1] [3.0] [14] [4.0]

L 0.22 0.50 0.28 -0.08 -0.13 24.4 -0.09 0.31 1.01 63.7 -0.10 64.1
[2.4] [7.9] [3.5] [-0.5] [-2.3] [-0.4] [1.9] [8.4] [-0.5]

WL 0.59* 0.58*

(7) W 0.22 0.58 0.24 0.19 -0.04 -2.17 1.02 -1.17 -1.11 28.8 0.50 0.30 0.87 77.0 0.51 77.3
[2.3] [9.7] [3.6] [1.4] [-0.8] [-1.8] [0.7] [-0.2] [-0.4] [4.1] [4.7] [14] [4.2]

L 0.41 0.40 0.32 -0.16 -0.08 -1.16 -2.68 -44.2 4.98 25.9 -0.09 0.30 0.98 64.1 -0.06 64.9
[3.2] [6.0] [3.9] [-1.0] [-1.3] [-0.8] [-1.5] [-4.4] [1.4] [-0.4] [2.0] [9.0] [-0.3]

WL 0.59* 0.57*

Notes: This table reports the results for the instrumental variables (IV) conditioning method under the 6-0-6
momentum strategy. The first set of columns gives estimates, t-statistics, and adjusted R2 values from the
first stage beta regression, βCPiτ = γi0 + γi1Zτ−1 + εiτ , where i ∈ {W,L}, τ indexes months, and instruments
Zτ−1 include 6- and 36-month LC betas (βLC6 and βLC36), 6- and 36-month market runup (RU6 and RU36),
dividend yield (DY), term spread (TS), 30-day T-bill rate (TB), and default spread (DS). The second set of

columns presents the results from the second stage return regression Riτ = αIV 2
i +(φi0 +φi1β̂

CP

iτ )RMτ +uiτ .
The third set of columns reports alphas and adjusted R2 values from a single-step regression, Riτ = αIV 1

i +
βi[1 Zτ−1]RMτ + εiτ . The performance measures αIV 2

i and αIV 1
i are in percent. Conditional winner minus

loser IV alphas that are significantly smaller than UC alphas at the 5% level are marked with an asterisk.
The sample period is from January 1930 to December 2005.



Table 8. Momentum CAPM Alphas: IV Method, 6-1-1 and 6-1-6

IV2 (Two-Step) IV1
Stage 1 Stage 2

Beta Regression Return Regression
γ0 βLC6 βLC36 RU6 RU36 DY TS TB DS R2 αIV 2 φ0 φ1 R2 αIV 1 R2

A. 6-1-1 Strategy
(1) W 1.14 0.66 1.01 68.9 0.66 68.9

[57] [4.6] [45] [4.6]
L 1.19 0.09 1.40 57.8 0.09 57.8

[47] [0.3] [35] [0.3]
WL 0.57 0.57

(2) W 1.43 -4.67 0.74 -27.9 -1.70 2.73 0.62 -0.11 1.18 70.6 0.64 70.7
[20] [-3.3] [0.4] [-3.0] [-0.5] [4.5] [-0.6] [7.2] [4.6]

L 1.37 -2.32 -6.97 -83.3 18.5 7.90 0.15 0.52 0.81 59.6 0.20 60.3
[16] [-1.4] [-3.3] [-7.2] [4.8] [0.6] [2.8] [6.4] [0.8]

WL 0.46* 0.44*

(3) W 0.07 0.59 0.27 31.4 0.61 0.25 0.90 74.0 0.60 73.9
[1.2] [11] [4.8] [4.7] [3.5] [13] [4.7]

L 0.08 0.54 0.35 24.8 0.23 0.47 0.92 60.6 0.22 60.7
[1.1] [7.9] [4.2] [0.9] [3.0] [8.1] [0.9]

WL 0.38* 0.39*

(4) W 0.22 0.59 0.24 0.17 -0.03 -2.37 0.91 1.14 -1.80 31.9 0.59 0.41 0.79 74.2 0.61 74.9
[2.4] [10] [3.5] [1.1] [-0.6] [-2.0] [0.6] [0.1] [-0.6] [4.6] [6.9] [14] [4.8]

L 0.33 0.40 0.40 -0.08 -0.11 -0.51 -1.40 -45.1 5.28 26.9 0.23 0.41 0.88 61.3 0.26 61.9
[2.4] [5.5] [4.6] [-0.4] [-1.6] [-0.3] [-0.7] [-4.2] [1.4] [0.9] [2.9] [9.2] [1.1]

WL 0.36* 0.35*

B. 6-1-6 Strategy
(1) W 1.15 0.68 1.05 73.0 0.68 73.0

[62] [5.1] [50] [5.1]
L 1.14 -0.46 1.37 60.9 -0.46 60.9

[50] [-2.0] [38] [-2.0]
WL 1.14 1.14

(2) W 1.41 -4.14 0.79 -24.2 -2.07 2.65 0.64 -0.21 1.30 74.7 0.68 75.3
[22] [-3.2] [0.5] [-2.8] [-0.7] [4.9] [-1.2] [7.9] [5.3]

L 1.39 -3.34 -7.80 -86.8 18.0 9.80 -0.40 0.52 0.77 62.6 -0.37 63.1
[18] [-2.2] [-4.2] [-8.5] [5.3] [-1.8] [3.1] [6.5] [-1.6]

WL 1.03 1.05

(3) W 0.07 0.58 0.28 29.7 0.63 0.18 0.96 77.7 0.62 77.7
[1.3] [10] [4.9] [5.2] [2.4] [14] [5.1]

L 0.12 0.54 0.26 24.0 -0.34 0.38 0.99 63.4 -0.35 63.7
[1.6] [9.1] [3.4] [-1.5] [2.4] [8.0] [-1.6]

WL 0.97* 0.97*

(4) W 0.22 0.58 0.25 0.19 -0.05 -1.82 0.66 -3.95 -1.24 29.9 0.61 0.30 0.88 78.0 0.64 78.4
[2.4] [9.7] [3.9] [1.5] [-1.1] [-1.6] [0.5] [-0.5] [-0.5] [5.1] [4.5] [14] [5.3]

L 0.41 0.42 0.29 -0.08 -0.07 -1.20 -2.65 -42.2 5.06 25.6 -0.32 0.23 1.03 64.3 -0.30 65.1
[3.3] [6.4] [3.7] [-0.5] [-1.2] [-0.8] [-1.5] [-4.2] [1.5] [-1.5] [1.6] [9.3] [-1.4]

WL 0.93* 0.94*

Notes: This table reports the results for the instrumental variables (IV) conditioning method under the
6-1-1 and 6-1-6 momentum strategies. The first set of columns gives estimates, t-statistics, and adjusted
R2 values from the first stage beta regression, βCPiτ = γi0 + γi1Zτ−1 + εiτ , where i ∈ {W,L}, τ indexes
months, and instruments Zτ−1 include 6- and 36-month LC betas (βLC6 and βLC36), 6- and 36-month
market runup (RU6 and RU36), dividend yield (DY), term spread (TS), 30-day T-bill rate (TB), and
default spread (DS). The second set of columns presents the results from the second stage return regression

Riτ = αIV 2
i + (φi0 + φi1β̂

CP

iτ )RMτ + uiτ . The third set of columns reports alphas and adjusted R2 values
from a single-step regression, Riτ = αIV 1

i +βi[1 Zτ−1]RMτ +εiτ . The performance measures αIV 2
i and αIV 1

i

are in percent. Conditional winner minus loser IV alphas that are significantly smaller than UC alphas at
the 5% level are marked with an asterisk. The sample period is from January 1930 to December 2005.



Table 9. Momentum CAPM Alphas: Comparison of Methods

Proxy Methods Instrumented
Overconditioned Lagged Methods

Strategy UC CPRD CPBH LP LC IV MI FC FI
6-0-6 0.81 1.43 1.09 0.47 0.43 0.57 0.52 0.60 0.51
p(α ≤ 0) 0.000 0.000 0.000 0.013 0.016 0.002 0.013 0.001 0.005
p(α ≤ αUC) 0.000 0.022 0.998 1.000 0.992 1.000 0.977 0.999
p(α ≤ αIV ) 0.008 0.000 0.000 0.869 0.982 0.682 0.157 0.968

6-1-1 0.57 1.43 0.97 0.25 0.15 0.35 0.31 0.33 0.22
p(α ≤ 0) 0.015 0.000 0.000 0.151 0.271 0.065 0.126 0.071 0.171
p(α ≤ αUC) 0.000 0.008 0.984 0.999 0.972 0.998 0.974 0.999
p(α ≤ αIV ) 0.028 0.000 0.000 0.769 0.997 0.613 0.676 0.999

6-1-6 1.14 1.69 1.39 0.81 0.81 0.94 0.86 0.98 0.88
p(α ≤ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p(α ≤ αUC) 0.000 0.031 0.998 0.999 0.980 1.000 0.941 0.995
p(α ≤ αIV ) 0.020 0.000 0.000 0.922 0.984 0.734 0.046 0.972
Notes: This table reports magnitude and significance of alphas from three momentum strategies. For each
portfolio, the first row shows the following alphas (in percent monthly): UC is unconditional alpha; CPRD is
rescaled daily contemporaneous portfolio alpha calculated using one-month windows; CPBH is buy-and-hold
contemporaneous portfolio alpha calculated using one-month windows; LP is lagged portfolio buy-and-hold
alpha calculated using one-month windows; LC is the lagged component (LC6) alpha; IV is alpha from a
one-step instrumental variables approach; MI is market-instrumented alpha; FC is forecast component (FC6)
alpha; and FI is alpha from the filtering approach. Alphas reported under instrumented methods use the
full set of instruments: LC6, LC36, RU6, RU36, DY, TS, TB, and DS, and calculation of FC alpha uses as
an additional instrument the forward component (βFC6) beta. The bottom three columns for each strategy
show p-values for the test that alpha in the column heading is less than or equal to either (1) zero, (2) the
UC alpha, or (3) the IV alpha, respectively. The sample period is from January 1930 to December 2005.



Table 10. Alpha Bias Decomposition

A. Underconditioning
Market Timing Volatility Timing

Alpha Difference M1 Timing M2 Timing

αUCi – ᾱIVi =
UC
Bias

=
(

1 + R̄2
M

σ2
M

)
Cov

(
βIViτ , RMτ

)
+ − R̄M

σ2
M
Cov

(
βIViτ , R̄

2
Mτ

)
+ − R̄M

σ2
M
Cov

(
βIViτ , σ

2
Mτ

)
6-0-6 Strategy

W 0.57 – 0.51 = 0.06 = –0.01 + 0.00 + 0.07
L –0.24 – –0.06 = –0.17 = –0.04 + 0.00 + –0.13
WL 0.81 – 0.57 = 0.23 = 0.03 + 0.00 + 0.20

6-1-1 Strategy
W 0.66 – 0.61 = 0.04 = –0.03 + 0.00 + 0.07
L 0.09 – 0.26 = –0.17 = –0.02 + 0.00 + –0.15
WL 0.57 – 0.35 = 0.22 = –0.01 + 0.00 + 0.22

6-1-6 Strategy
W 0.68 – 0.64 = 0.04 = –0.01 + 0.00 + 0.05
L –0.46 – –0.30 = –0.16 = –0.04 + 0.00 + –0.12
WL 1.14 – 0.94 = 0.20 = 0.03 + 0.00 + 0.17

B. Overconditioning
Possible

Alpha Difference Overconditioning Underconditioning Beta Difference

ᾱCPi – ᾱIVi =
OC
Bias

= −Cov(βCP−IViτ , εMτ ) + −Cov(βCP−IViτ , R̄Mτ ) – β̄
CP−IV
i · R̄M

6-0-6 Strategy
W 1.24 – 0.51 = 0.73 = 0.65 + –0.01 – –0.09
L 0.15 – –0.06 = 0.22 = 0.08 + –0.01 – –0.14
WL 1.09 – 0.57 = 0.51 = 0.57 + 0.00 – 0.06

6-1-1 Strategy
W 1.36 – 0.61 = 0.75 = 0.66 + 0.02 – –0.08
L 0.39 – 0.26 = 0.13 = –0.01 + –0.01 – –0.15
WL 0.97 – 0.35 = 0.62 = 0.66 + 0.03 – 0.07

6-1-6 Strategy
W 1.34 – 0.64 = 0.70 = 0.63 + –0.02 – –0.09
L –0.06 – –0.30 = 0.24 = 0.10 + 0.00 – –0.15
WL 1.39 – 0.94 = 0.46 = 0.53 + –0.01 – 0.06

Notes: This table provides decompositions that demonstrate the magnitudes of the biases due to market-
timing, volatility-timing, and overconditioning. Panel A provides two equivalent decompositions of the uncondi-
tional alpha bias αUCi −ᾱIVi into either (i) the sum of market-timing bias αUCM = (1+R̄2

M/σ
2
M )Cov(βIViτ , RMτ )−

(R̄M/σ2
M )Cov(βIViτ , R̄

2
Mτ ) and volatility-timing bias αUCσ = −(R̄M/σ2

M )Cov(βIViτ , σ
2
Mτ ), or (ii) the sum

of biases due to covariance with with first and second uncentered moments of market return, αUCM1 =
(1 + R̄2

M/σ
2
M )Cov(βIViτ , RMτ ) and αUCM2 = −(R̄M/σ2

M )Cov(βIViτ , R̄
2
Mτ ) − (R̄M/σ2

M )Cov(βIViτ , σ
2
Mτ ) =

−(R̄M/σ2
M )Cov(βIViτ , R

2
Mτ ). Panel B decomposes the difference between CP and IV alphas ᾱCPi − ᾱIVi into the

sum of three components: overconditioning, −Cov(βCP−IViτ , εMτ ), where βCP−IViτ = βCPiτ −β
IV
iτ and εMτ is the

unexpected market return; possible underconditioning, −Cov(βCP−IViτ , Rτ−1
Mτ ); and the effect of the difference

in average betas, −β̄CP−IVi · R̄M , where β̄CP−IVi = β̄
CP
i − β̄IVi . CP betas are calculated in windows of one

month. IV alphas and betas are from the IV1 approach that uses the full set of instruments: 6- and 36-month
lagged component betas, 6- and 36-month market runup, dividend yield, term spread, T-bill rate, and default
spread. The same variables are used as regressors to obtain unexpected market returns. The sample period is
from January 1930 to December 2005.
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Table A3. CAPM Momentum Alphas: Filtering Method

Stage 1 Stage 2
γ0 γ1 γ2 γ3 R2 αFI δ0 δ1 R2

A. 6-0-6 Strategy
(1) W 0.03 1.00 41.8 0.50 -0.03 1.00 77.0

[0.6] [26] [4.1] [-0.4] [14]
L -0.02 0.99 36.9 -0.09 0.02 1.01 64.1

[-0.3] [23] [-0.4] [0.1] [9.0]
WL 0.59

(2) W 0.07 0.88 0.10 43.2 0.57 -0.10 1.05 77.6
[1.3] [19] [4.8] [4.8] [-1.1] [15]

L 0.01 0.91 0.08 37.6 -0.07 -0.18 1.13 64.9
[0.1] [18] [3.3] [-0.3] [-1.0] [10]

WL 0.64

(3) W 0.03 1.00 0.18 41.8 0.45 -0.04 1.00 76.9
[0.6] [26] [0.9] [3.7] [-0.4] [14]

L -0.02 0.99 -0.07 36.9 -0.08 0.04 1.00 64.0
[-0.3] [23] [-0.3] [-0.3] [0.2] [8.9]

WL 0.52

(4) W 0.07 0.87 0.12 0.43 43.4 0.45 -0.10 1.04 77.2
[1.4] [19] [5.2] [2.2] [3.7] [-1.1] [14]

L 0.01 0.91 0.08 -0.05 37.5 -0.06 -0.17 1.13 64.8
[0.1] [18] [3.3] [-0.2] [-0.3] [-0.9] [10]

WL 0.51

B. 6-1-1 Strategy
W 0.02 0.90 0.12 0.52 42.4 0.52 -0.09 1.05 74.4

[0.3] [18] [5.2] [2.4] [4.1] [-1.0] [14]
L -0.20 1.03 0.08 -0.21 42.4 0.30 0.05 0.99 61.9

[3.0] [20] [3.4] [-0.7] [1.2] [0.3] [10]
WL 0.22

C. 6-1-6 Strategy
W 0.07 0.87 0.11 0.37 43.8 0.58 -0.12 1.07 78.4

[1.3] [19] [4.9] [1.9] [4.8] [-1.3] [15]
L 0.09 0.86 0.08 0.01 36.0 -0.30 -0.27 1.19 65.1

[1.5] [18] [3.1] [0.0] [-1.4] [-1.5] [10]
WL 0.88

Notes: This table reports the results of the filtering methods. First stage regression is
βFCτ = γ0 + γ1β

IV
τ + γ2β

CP
τ + γ3εMτ + uτ ,

where βFCτ is the 12-month forward component beta; βCPτ is computed using one month of daily data; βIVτ
is calculated using the one-step instrumental variables approach with LC6, LC36, RU6, RU36, DY DY, DS,
TB, and TS as instruments; and unexpected market return εMτ is the residual from regressing RMτ on the
same set of instruments. The second stage performance regression uses the fitted beta β̂

FC

τ from the first
stage:

Rτ = αFI +
(
δ0 + δ1β̂

FC

τ

)
RMτ + ντ .

Regressions are run separately for winners and losers, and t-statistics are in square brackets. The sample
period is 1930-2005.
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Figure 1. Overconditioning in a 4-state Example. This figure plots portfolio returns against
the market return to illustrate overconditioning in a 4-state example. The solid line passing through the
origin shows the investor-conditioned pricing relation, while the dashed lines represent the nonlinearity in
payoffs, or the overconditioned pricing relations. Returns are RM (Ω) ≡ [−0.057,−0.012, 0.032, 0.077] and
Ri(Ω) = [−0.068,−0.001, 0.044, 0.066], and conditional betas are βBi = 1.5 and βGi = 0.5.
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Figure 2. Volatility-Timing in Momentum. This figure shows the scatterplot of the IV betas of
the 6-0-6 momentum strategy vs. squared monthly market return. DY, TB, DS, TS, 6- and 36-month market
runup, and 6- and 36-month LC betas are used to obtain IV betas. The sample period is from January 1930
to December 2005.
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Figure 3. Overconditioning in Momentum. This figure shows the scatterplot of the difference
between CP and IV betas of the 6-0-6 momentum strategy vs. unexpected monthly market return. DY, TB,
DS, TS, 6- and 36-month market runup, and 6- and 36-month LC betas are used to obtain IV betas and
unexpected market return. The sample period is from January 1930 to December 2005.
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