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Introduction

This paper compares solution methods for production-based asset pricing models with recur-

sive utility. In particular, we consider a standard neoclassical growth model with Epstein-

Zin-Weil utility. Bansal and Yaron (2004) demonstrates the importance of recursive util-

ity for explaining both asset prices and macroeconomic variables in a general equilibrium

endowment setting. More recent extensions to production economies, e.g. Croce (2006),

Campanale et al. (2010), Kaltenbrunner and Lochstoer (2010) and Rudebusch and Swanson

(2008), show similar promise in reconciling financial and quantity dynamics and are becom-

ing increasingly common in the literature. Accordingly, it is important to understand the

behavior of solution methods for these models, and our work contributes to the literature

along that dimension.

We focus on two standard methods of solution for dynamic stochastic general equilibrium

(DSGE) models: a global projection method using Chebyshev basis functions and a local

perturbation method of various orders. Aruoba et al. (2006) compares these solution methods

for a neoclassical growth model with constant relative risk aversion utility, and demonstrates

that both methods are broadly suitable. Our aim is to investigate the appropriateness of

these solution methods when utility takes a more general, recursive form. Notably, we find

that the two solution methods produce roughly equivalent implications for macroeconomic

quantities, but can be very different with respect to asset prices and welfare costs. This

discrepancy is exacerbated as the volatility of the total factor of productivity (TFP) is

increased.

Several considerations drive our results. First, the value function corresponding to

Epstein-Zin-Weil utility exhibits a high degree of curvature with respect to the TFP volatil-

ity; second, perturbation is a local Taylor approximation around the deterministic steady

state, where the TFP volatility is zero; and third, in the presence of recursive utility, asset

prices and welfare costs, not quantities, depend critically on the shape of the value function.

The upshot is that for models with high output volatility, perturbation attempts to approx-

imate a rapidly changing function at a locus (zero TFP volatility) that is far from the point

of interest (high TFP volatility). Taylor’s Theorem shows that the resulting approximation
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error can be arbitrarily bad and can even increase with the order of approximation. Thus,

when the TFP is calibrated to have high volatility, the resulting approximation of the value

function obtained by perturbation can be very bad, yielding poor approximations for prices

and welfare costs.

In addition to the direct effect of TFP volatility on approximation quality, we investigate

the effect of other parameters. We find that the subjective discount factor, output growth

and risk sensitivity are also important for solution accuracy, but in a more indirect manner:

the solution methods diverge when these parameters increase the value function’s sensitivity

to TFP volatility. We describe the interplay between these parameters and solution accuracy.

Our problem dictates that, at a minimum, we must approximate the value function and

policy function of the endogenous choice variable (consumption). In theory, if our solutions

are sufficiently accurate, we can use them to accurately approximate any other variable in

the model, even if it depends on the value and policy functions in a nonlinear way. The

reverse is also true – a poor solution for either the value or policy functions will contaminate

approximations of other model quantities. However, in the case of perturbation, we find that

computing a local approximation of asset prices directly can ameliorate their dependency on

the (poorly approximated) value function and improve their accuracy. We show how this

modification can bring the model’s asset pricing implications far closer to those produced by

a global method. Unfortunately, the same result does not hold for welfare costs.

Caldara et al. (2009) compares these solution methods for a similar model with recur-

sive utility. Their results suggest that while global methods are numerically superior, local

methods are very accurate and strike an excellent balance between computation time and

accuracy. Our results diverge from theirs because we consider a more broad set of parameter

values - values which are often used in the asset pricing literature. That is, we are careful

to stress that the aforementioned results depend critically on the calibrated level of TFP

volatility. Hence, many asset pricing models which calibrate to annual, pre-war data will be

badly approximated with a perturbation method. On the other hand, models which spec-

ify much smaller values of output volatility (e.g. macroeconomic models which calibrate to

quarterly, post-war data, such as Caldara et al. (2009)) are likely to find perturbation to be

an adequate, and even preferred solution method.
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When perturbation is accurate, it is often the preferred solution method since it is ex-

tremely fast and can be efficiently nested within an estimation framework. For the particular

problem we consider, the projection and perturbation methods are essentially equivalent in

computation time, as the model only entertains one state variable. However, if the complex-

ity of the model is increased (more state variables added), a global projection method would

quickly deteriorate in computing time due to the curse of dimensionality. This curse is the

relative disadvantage of a global method.

The results of this paper suggest that when using perturbation for production-based

asset pricing models, it would be wise to compare the results with a global solution method.

In particular, for models with a high calibration of TFP volatility, a global method, while

computationally more burdensome, is more suitable since it yields a superior approximant

to the value function.

This paper proceeds as follows. Section 1 describes our model in detail, Section 2 outlines

the solution methods applied to the model, Section 3 reports the results of the two solution

methods in addition to diagnostics that explore their accuracy and Section 4 concludes.

1 Model

We follow Kaltenbrunner and Lochstoer (2010) in specifying a basic neoclassical growth

model with Epstein-Zin-Weil utility. As mentioned in the previous section, this model is very

similar to that of Croce (2006), the primary difference being that Croce (2006) explicitly

specifies a long-run risk component in the total factor of productivity process. While Croce

(2006) does a better job of explaining both quantity and price dynamics, and while the

model of Kaltenbrunner and Lochstoer (2010) exhibits several deficiencies with respect to

asset prices, we choose the latter specification for two reasons. First, it is a more simple

generalization of the neoclassical growth model, obtained by substituting Epstein-Zin-Weil

utility for power utility, and nests the more standard model. Second, through appropriate

normalization, the model has only one state variable. This simplicity allows us to emphasize

the computational results with greater ease. We anticipate that the results will extend to

more complicated, and perhaps appealing, situations.
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1.1 Preferences

Our economy admits a representative agent whose utility function follows Epstein and Zin

(1989) and Weil (1990):

U
(
Ct

)
=
(

(1− β)C
1−γ
θ

t + β(E t[U
(
Ct+1

)1−γ
])

1
θ

) θ
1−γ

, (1)

where 0 < β < 1 is the subjective discount factor, E t is the conditional expectations operator,

Ct denotes aggregate consumption, Ct = (Ct, Ct+1, . . .), γ denotes the agent’s coefficient of

relative risk aversion, ψ denotes the agent’s inter-temporal elasticity of substitution (IES),

and θ = 1−γ
1−1/ψ

. A particularly desirable feature of this utility function is that it separates the

IES and risk aversion parameters, as opposed to the standard constant relative risk aversion

(CRRA) utility, where IES and risk aversion are inversely related. In theory, it is not clear

that there should be a tight link between these two parameters, as risk aversion is atemporal

while IES is temporal.

As shown in Epstein and Zin (1989) and Weil (1989), the log of the stochastic discount

factor, mt+1, for these preferences is

mt+1 = θ ln β − θ

ψ
∆ct+1 − (1− θ)ra,t+1, (2)

where ∆ct+1 denotes log consumption growth and ra,t+1 denotes the log gross return on

the aggregate wealth portfolio. Of particular importance is the presence of ra,t+1 in the

specification of the discount factor, which makes innovations to expected consumption growth

a priced risk factor; in the standard model with CRRA utility, θ = 1 and the last term

disappears. It is this feature of Epstein-Zin-Weil utility that makes agents concerned about

shocks to expected future consumption growth and that allows us to amplify the equity

premium while evading the risk-free rate puzzle (Mehra and Prescott (1985)).

1.2 Technology

A single firm owns the capital stock and produces a consumption good via Cobb-Douglass

technology, using labor and capital as inputs:

Yt = (ZtHt)
(1−α)Kα

t ,
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where Zt is the stochastic total factor of productivity, Ht denotes the number of hours worked,

Kt represents capital and α is the share of capital in the production function. Under the

assumption that H is the agent’s total leisure endowment, it is clear that utility is going to be

maximized when Ht = H, ∀t, since Ht does not appear in the utility function. Normalizing

H = 1, the production function simplifies to

Yt = Z
(1−α)
t Kα

t . (3)

The log technology process, zt = ln(Zt), evolves exogenously according to

zt = µt+ z̃t, (4)

z̃t = ϕz̃t−1 + σzεt, (5)

εt ∼ N(0, 1). (6)

We limit ourselves to the special case of ϕ = 1, since this allows us to retain only one state

variable; our computational results are similar for the case of persistent, yet trend stationary

zt (when |ϕ| < 1). Hence, the log of TFP is a random walk with drift parameter µ, and in

this special case shocks to technology are permanent.

1.3 Capital Accumulation

Following Jermann (1998), we allow capital adjustment costs in the accumulation equation

Kt+1 = φ

(
It
Kt

)
Kt + (1− δ)Kt, (7)

where

φ(x) =
α1

1− 1/ξ
x1−1/ξ + α2 (8)

is an increasing, concave function which induces large changes in the capital stock to be

more costly than successive small changes. The parameter ξ governs the degree of concavity

and has the desirable feature that as ξ → ∞, φ(x) becomes the identity function (with

an appropriate specification of α1 and α2); that is, capital adjustment costs disappear. At

the other extreme, as ξ → 0, It → 0, ∀t, and φ(x) ≡ exp(µ) − 1 + δ, allowing us to
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obtain an endowment economy where all output is consumed each period and the capital

stock grows deterministically at rate exp(µ). Hence, for intermediate values, the adjustment

cost parameter, ξ, allows us flexibility in matching the relative volatilities of consumption

and output. As mentioned above, the remaining parameters are defined so as to eliminate

adjustment costs in the deterministic steady state: α1 = (exp(µ) − 1 + δ)1/ξ and α2 =

1
1−ξ (exp(µ)− 1 + δ) (see Appendix A for a derivation).

1.4 Equilibrium

In equilibrium, the aggregate resource constraint is binding:

Ct + It = Yt. (9)

In this basic environment, the welfare theorems are satisfied and the solution to the social

planner’s problem yields the same allocations as a competitive equilibrium. The planner’s

problem is

V (Kt, Zt) = max
Ct,Kt+1

W (Ct, Kt+1)
θ

1−γ (10a)

subject to

Kt+1 = φ

(
Z1−α
t Kα

t − Ct
Kt

)
Kt + (1− δ)Kt, (10b)

where

W (Ct, Kt+1) = (1− β)C
1−γ
θ

t + β
(
E t

[
V (Kt+1, Zt+1)1−γ]) 1

θ . (11)

Hence, the planner maximizes

L = W (Ct, Kt+1)
θ

1−γ + λt

(
φ

(
It
Kt

)
Kt + (1− δ)Kt −Kt+1

)
(12)

over Ct and Kt+1, where

Zt = Zt−1 exp(µ+ σzεt), εt ∼ N(0, 1). (13)
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The resulting first order conditions are

∂L
∂Ct

= (1− β)W̌
1

ψ−1

t Č
− 1
ψ

t − λ̌tφ′
(
Ǐt
Kt

)
= 0 (14a)

∂L
∂Kt+1

= βW̌
1

ψ−1

t

(
E t

[
V̌ 1−γ
t+1

]) 1
θ
−1 E t

[
V̌ −γt+1

∂Vt+1

∂Kt+1

∣∣∣∣
Ǩt+1

]
− λ̌t (14b)

= −λ̌t + βW̌
1

ψ−1

t

(
E t

[
V̌ 1−γ
t+1

]) 1
θ
−1

× E t

[
V̌ −γt+1

ˇ̌λt+1

(
φ′

(
ˇ̌It+1

Ǩt+1

)
(α− 1)Y̌t+1 + ˇ̌Ct+1

Ǩt+1

+ φ

(
ˇ̌It+1

Ǩt+1

)
+ 1− δ

)]
= 0 (14c)

∂L
∂λt

= φ

(
Ǐt
Kt

)
Kt + (1− δ)Kt − Ǩt+1 = 0, (14d)

where Čt, Ǩt+1 and λ̌t are the optimal values of Ct, Kt+1 and λt,
ˇ̌Ct+1 = Čt+1|Ǩt+1

, ˇ̌λt+1 =

λ̌t+1|Ǩt+1
, Y̌t+1 = Z1−α

t+1 Ǩ
α
t+1, Ǐt = Yt − Čt,

ˇ̌It+1 = Y̌t+1 − ˇ̌Ct+1, Vt = V (Kt, Zt), V̌t+1 =

V (Ǩt+1, Zt+1), W̌t = W (Čt, Ǩt+1) and where Equation (14c) follows from (14b) by the

envelope theorem:

∂Vt
∂Kt

=
∂L
∂Kt

∣∣∣∣
Čt,Ǩt+1,λ̌t

= λ̌t

(
φ′
(
Ǐt
Kt

)
(α− 1)Yt + Čt

Kt

+ φ

(
Ǐt
Kt

)
+ 1− δ

)
. (15)

Substituting Equation (14a) into (14c) and recognizing that W̌t+1|Ǩt+1
= V̌

1−γ
θ

t+1 , we obtain

the intertemporal Euler equation

E t

Mt+1φ
′
(
Ǐt
Kt

)(α− 1)Y̌t+1 + ˇ̌Ct+1

Ǩt+1

+
φ
(

ˇ̌It+1

Ǩt+1

)
+ 1− δ

φ′
(

ˇ̌It+1

Ǩt+1

)
 = 1 (16)

where

Mt+1 = β

(
ˇ̌Ct+1

Čt

)− 1
ψ

V̌
1
ψ
−γ

t+1(
E t

[
V̌ 1−γ
t+1

])1− 1
ψ

(17)

is an alternative expression for the Epstein-Zin-Weil stochastic discount factor, equivalent

to exp(mt+1) in Equation (2). As shown in Appendix B, the return on equity is

RE
t+1 = φ′

(
It
Kt

)(α− 1)Yt+1 + Čt+1

Kt+1

+
φ
(
Ǐt+1

Kt+1

)
+ 1− δ

φ′
(
Ǐt+1

Kt+1

)
 , (18)
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which is the term scaling the stochastic discount factor in Equation (16). Hence, the Euler

equation can be written compactly as E t[Mt+1Ř
E
t+1] = 1, for an appropriate definition of

ŘE
t+1 in terms of optimal values. This expression for the return to equity will be useful when

evaluating the quality of model solutions.

To preserve stationarity in the economy, we normalize all variables by the level of the

contemporaneous technology process:{
Ĉt, K̂t, Ẑt+1, Ît, Ŷt, V̂t

}
=

{
Ct
Zt
,
Kt

Zt
,
Zt+1

Zt
,
It
Zt
,
Yt
Zt
,
Vt
Zt

}
. (19)

Alternatively, we could have normalized by Zt−1, but the former specification results in only

one state variable – a feature that allows us to place emphasis on the computational results.

The normalized system of equilibrium conditions can then be expressed as (suppressing the

x̌ notation for optimal values of x)

V̂ (K̂t)−

(
(1− β)Ĉ

1−γ
θ

t + β
(
E t

[
Ẑ1−γ
t+1 V̂ (K̂t+1)1−γ

]) 1
θ

) θ
1−γ

= 0 (20a)

E t

Mt+1 φ
′

(
Ît

K̂t

)(α− 1)Ŷt+1 + Ĉt+1

K̂t+1

+
φ
(
Ît+1

K̂t+1

)
+ 1− δ

φ′
(
Ît+1

K̂t+1

)
− 1 = 0 (20b)

K̂t+1 −
1

Ẑt+1

(
(1− δ)K̂t + φ

(
Ît

K̂t

)
K̂t

)
= 0 (20c)

where

Ẑt = exp(µ+ σzεt), εt ∼ N(0, 1). (21)

2 Solution Methods

We now describe the two methods we use to solve the model of the previous section.

2.1 Perturbation

Perturbation methods, suggested for economic models by Judd and Guu (1997) and Judd

(1998), and widely popularized by Schmitt-Grohé and Uribe (2004), build an asymptotically
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valid polynomial approximation of a function around a point where the solution is known.

In general notation, perturbation seeks a local approximation to a function, F , where

F (x(ε), ε) = 0, (22)

and where F (x(0), 0) is known. The typical specialization in economics is for F to represent

a system of nonlinear stochastic difference equations,

F (x(ε), ε) = E t[f(xt+1(ε),xt(ε), ε)] = 0, (23)

where the deterministic steady state, E t[f(xt+1(0),xt(0), 0)] = f(xss,xss, 0) is known. The

canonical economic example is the neoclassical growth model, where f is a system of equa-

tions including the inter-temporal Euler equation and constraints, and where the polynomial

approximation to f is a Taylor expansion. However, there is no a priori reason to restrict our

attention to the inter-temporal Euler equation; since we are interested in computing financial

moments and since bond prices in a recursive utility model depend on the value function, it

is natural for us to approximate the value function directly. Judd and Guu (1997) and Judd

(1998) are early examples of using the value function to generate perturbation conditions

and van Binsbergen et al. (2008) provides an argument for this approach. Our particular

solution method utilizes both the value function and the intertemporal Euler equation.

We use system (20) to build approximations of the value and policy functions:

Ṽpert(K̂, σz) =
∑
i,j

V̂ (i,j)
ss (K̂ − K̂ss)

iσjz (24a)

C̃pert(K̂, σz) =
∑
i,j

Ĉ(i,j)
ss (K̂ − K̂ss)

iσjz (24b)

where

V̂ (i,j)
ss =

(
1

i!j!

)
∂i+jV̂t

∂iK̂t∂jσz

∣∣∣∣∣
K̂ss,0

(24c)

and

Ĉ(i,j)
ss =

(
1

i!j!

)
∂i+jĈt

∂iK̂t∂jσz

∣∣∣∣∣
K̂ss,0

. (24d)
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To obtain these approximations, we take successive derivatives of Equations (20a) and (20b)

with respect to K̂t and σz, and evaluate the resulting systems of equations at the deterministic

steady state to obtain closed form solutions for the coefficients in Equations (24c) and (24d).

For example, Equations (20a) - (21) evaluated at the deterministic steady state contain

enough information to determine Ẑss, K̂ss, V̂
(0,0)
ss and Ĉ

(0,0)
ss . Taking first derivatives (with

respect to K̂t and σz) of Equations (20a) and (20b) and again evaluating at the deterministic

steady state allows us to solve for V̂
(1,0)
ss , V̂

(0,1)
ss , Ĉ

(1,0)
ss and Ĉ

(0,1)
ss . Continuing in this fashion

leads to the approximations in Equations (24a) and (24b), where the order of approximation

of is equivalent to the number of times we have differentiated Equations (20a) and (20b).

As mentioned in Aruoba et al. (2006), the first order solution involves a quadratic matrix

equation, but each order of approximation thereafter only necessitates the solution of a

linear system. Hence, higher order solutions only require a matrix inversion, albeit of rapidly

increasing size.

With approximations Ṽpert(K̂, σz) and C̃pert(K̂, σz) in hand, we can compute any other

variable in the economy, where the accuracy of the approximation of those variables will

depend on the underlying accuracy of our approximations for Vt and Ct. However, we

can also approximate other variables of interest by augmenting system (20) with additional

equilibrium conditions. In our case, we are interested in approximating both the risk-free

rate and log(Vt/Ct) (which we will use in computing welfare costs). The requisite equilibrium

conditions are

Rf
t+1 − E t [Mt+1]−1 = 0 (25a)

LV Ct − log
(
V̂t/Ĉt

)
= 0. (25b)

Adding Equations (25a) and (25b) to system (20) allows us to obtain approximations

R̃f
pert(K̂, σz) =

∑
i,j

R̂f
(i,j)

ss (K̂ − K̂ss)
iσjz (26a)

L̃V Cpert(K̂, σz) =
∑
i,j

L̂V C
(i,j)

ss (K̂ − K̂ss)
iσjz (26b)

as outlined above.
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2.2 Projection

Similar to perturbation, projection methods seek a polynomial approximation to a function,

F , as in Equation (22), or more commonly to the special case, f , as in Equation (23).

However, rather than using the known solution at ε = 0 to construct a local approximation,

we specify a polynomial expansion, x̂, with coefficients chosen to minimize f(x̂) globally,

over the domain of x. As before, for the neoclassical growth model, f would be comprised of

the inter-temporal Euler equation and constraints, and a projection solution would specify

a polynomial expansion of the consumption policy that would minimize the Euler equation

error.

The analogous approach to our problem would be to use Equations (20a) and (20b) to

obtain approximations,

Ṽproj(K̂) =
M∑
j=0

ajϕj(K̂) (27a)

and

C̃proj(K̂) =
M∑
j=0

bjϕj(K̂), (27b)

where M is the order of approximation and ϕj, j = 1, 2, . . ., represent a set of linearly inde-

pendent polynomial basis functions. That is, given an order of approximation M , we could

specify a grid of N ≥ M points for K̂ and evaluate Equations (20a) and (20b) (coupled

with the constraint (20c)) at those points to obtain a system of 2N equations in 2M un-

knowns. We could then use a nonlinear solution method to find the coefficients a and b, in

Equations (27a) and (27b), that best satisfy (20a) and (20b).

As there is no theorem to guarantee convergence of the preceding approach, we fol-

low an alternative methodology, suggested by Campanale et al. (2010), Croce (2006) and

Kaltenbrunner and Lochstoer (2010), which is to couple polynomial approximations of the

value and policy functions with value function iteration. Specifically, we seek a polynomial

approximation to the value function as in Equation (27a). Letting Nk ≥M , we specify a (not

necessarily equally spaced) grid for K̂, spanning the values (0.1K̂ss, 1.9K̂ss). Additionally,

we set Nε = dM+1
2
e and confine ε to the order Nε Gauss-Hermite abscissae. To ease notation,
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we suppress time subscripts, collect the Nk values of K̂ in the vector K̂ and group the basis

functions evaluated at each value of K̂ in the matrix Φ(K̂), where Φ(K̂)ij = ϕj(K̂i). Using

this notation, Ṽproj(K̂) = Φ(K̂)a. Our algorithm proceeds in the following manner:

1: Set τ = 0.00000001(1− β), ∆ = 1, l = 0 and a0 = 1.

2: while ∆ > τ do

3: for i = 1 to Nk do

4: Solve V̂ ∗i = maxĈ

{
(1− β)Ĉ

1−γ
θ + β

(
E(K̂i, Ĉ)

) 1
θ

} θ
1−γ

where

5: for j = 1 to Nε do

6:

Ẑ ′j = exp(µ+ σzε
′
j)

K̂ ′i,j(Ĉ) =
1

Ẑ ′j

(
(1− δ)K̂i + φ

(
K̂α
i − Ĉ
K̂i

)
K̂i

)

and

Ψ(K̂i, Ĉ, ε
′
j) = Φ(K̂ ′i,j(Ĉ))al.

7: end for

8:

E(K̂i, Ĉ) =
Nε∑
j=1

ωjẐ
′1−γ
j Ψ(K̂i, Ĉ, ε

′
j)

1−γ,

and where ωj, j = 1, 2, . . . , Nε, are the Gauss-Hermite quadrature weights. Denote

the argmax by Ĉ∗i . Clearly, Ψ(K̂i, Ĉ, ε
′
j) is an approximation of V̂ (K̂ ′), given K̂i, Ĉ

and ε′j, and E(K̂i, Ĉ) is an approximation of E t

[
Ẑ ′1−γV̂ (K̂ ′)1−γ

]
, given K̂i and Ĉ.

9: end for

10: Update the coefficients by solving the linear system

al+1 = (Φ(K̂)TΦ(K̂))−1Φ(K̂)T V̂
∗
,

where V̂
∗

is the vector comprised of V̂ ∗i , i = 1, 2, . . . , Nk.

11: Set ∆ = max
{

Φ(K̂)al+1 − Φ(K̂)al
}

and l = l + 1.

12: end while
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13: Solve for the coefficients of the consumption policy approximant

bl+1 = (Φ(K̂)TΦ(K̂))−1Φ(K̂)T Ĉ
∗
,

where Ĉ
∗

is the vector comprised of Ĉ∗i , i = 1, 2, . . . , Nk.

The maximization step in line 2.2 of the algorithm can be performed in a variety of ways;

we use a binary search method that exploits the monotonicity of the value function with

respect to Ĉ (see Appendix C). We also speed the algorithm with a Howard improvement

step, performing the maximization in line 2.2 only when l− 100bl/100c = 0 (that is, when l

modulo 100 is zero) and otherwise computing V̂ ∗i by substituting the contemporaneous value

of Ĉ∗i . The resulting polynomial approximations are

Ṽproj(K̂) = Φ(K̂)al (28)

and

C̃proj(K̂) = Φ(K̂)bl. (29)

For our particular implementation of the projection algorithm, we use Chebyshev basis

functions and their collocation points; this method allows us to choose the Nk values of K̂ so

that the interpolation errors are uniformly minimized and so that Nk = M . We find that a

value as low as M = 6 (an order 5 polynomial) provides accurate solutions to the problem.

3 Results

We now apply the solution methods outlined in the previous section to the model of Section 1

and state the main result of our paper: while the quantity dynamics of the two methods are

essentially equivalent for a variety of parameter values, the same is not true of variables that

are tightly linked to the value function, such as asset prices and welfare costs. We discuss the

reasons for this result and outline a very simple motivating example that provides intuition

for the particular problem we consider. We conclude the section by reporting diagnostics

which compare the accuracy of the solution methods.
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3.1 Calibration

We fix several parameters of our model and report them in Table 1. These values are widely

accepted in the literature; in particular, the depreciation rate and share of capital, δ and α,

respectively, are identical to those of Jermann (1998). The quarterly growth rate, µ, implies

annual growth of 1.6 percent and the intertemporal elasticity of substitution (IES) parameter,

ψ, is set in the middle of the range ((1,2]) advocated by Bansal et al. (2007). In reality, we

considered alternative values of µ and ψ but do not report the corresponding solutions and

simulations as they do not alter the qualitative nature of our results. Finally, the adjustment

cost parameter, ξ, was chosen so that the ratio of volatilities of log consumption growth to

log output growth matches empirical estimates (in the vicinity of 0.5), which depend on the

time period and frequency of the data (see discussion below).

α δ ψ µ ξ

0.36 0.025 1.5 0.004 13

Table 1: Quarterly model calibration

To understand our parameterization of the TFP volatility, it is instructive to consider

the data moments reported in Table 2. The table contains means and volatilities for GDP,

aggregate consumption and the 90 T-bill, both at annual and quarterly frequencies, for

several sample periods. We highlight two important features of the data. First, the volatility

of log output growth is markedly different between pre-war and post-war samples, the former

being roughly 2.5 to 3 times as great as the latter. Second, the mean of the risk-free rate

increases and its volatility decreases as the time horizon is curtailed to include fewer years.

In the case of the mean, values in later samples are up to twice as large as that of the pre-war

sample.

As a result of the variance in sample moments across sub-periods, we observe a wide

range of calibrated values for the TFP volatility, σz, and the discount factor, β, in the

literature. Since σz determines output volatility, models that calibrate to quarterly (post-

war) data often specify much smaller values of σz than models which calibrate to annual data.
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1929-2008 (A) 1950-2008 (Q) 1960-2008 (Q) 1970-2008(Q)

Std (∆c) 0.0108 0.00490 0.00451 0.00429

Std (∆y) 0.0246 0.00980 0.00857 0.00840

Std (∆c)/Std (∆y) 0.439 0.500 0.526 0.510

Mean(rf ) 0.00847 0.0146 0.0173 0.0168

Std (rf ) 0.0119 0.00747 0.00723 0.00801

Table 2: Data moments for different periods and frequencies. ‘A’ denotes annual frequency and ‘Q’ denotes

quarterly frequency. Quarterly samples begin with the first quarter of the stated year and end with

the final quarter of 2008. ‘c’ and ‘y’ denote the log of real consumption (nondurables plus services)

and GDP, respectively, and are obtained from NIPA Tables 1.1.4 - 1.1.6, with annual values scaled

to quarterly for comparison. ‘rf ’ denotes the net return on the 90 T-bill, obtained from CRSP

(monthly frequency for all horizons), converted to real by subtracting the 12 month lagged moving

average of CPI return (as a forecast of expected inflation). The risk-free is annualized by a simple

scale factor.

Hence, we allow σz ∈ {0.01, 0.02, 0.03, 0.04}. Since Std (∆y) ≈ (1 − α)σz (the volatility of

log capital growth is very small) in our model, our choices of σz correspond to Std (∆y) ∈

{0.0064, 0.0128, 0.0192, 0.0256}, a range that encompasses the moments reported in Table 2.

For the remaining parameters, the discount rate, β, and coefficient of relative risk aver-

sion, γ, we entertain β ∈ [0.980, 0.998] and γ ∈ {2, 5, 10}. We choose these values because

they not only encompass accepted values in the literature, but they allow a broad enough

range of parameterizations to investigate their effect on the sensitivity of the value function

to σz. In general, we are primarily concerned with β > 0.99, as these higher values are

requisite for matching moments of the risk-free asset.

3.2 Model Implications

3.2.1 Low Volatility

Table 3 reports simulation results for both projection and perturbation methods when σz =

{0.01, 0.02} and when γ = 5. We set β = 0.998, which simultaneously yields a risk-free
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rate in the neighborhood of those observed in post-war data and that allows us to closely

approximate the historical pre-war risk-free rate of 0.00847 (see Table 4) when σz > 0.02.

We use fifth order Cheybshev polynomials for projection and third order Taylor expansions

in the case of perturbation – for the former method, higher order approximations make

little material difference to the stated results, and for the latter, numerical instabilities lead

to potentially greater discrepancies than those reported. Finally, moments are computed

by simulating 100,000 quarterly observations and then aggregating financial variables to an

annual frequency by a simple scale factor.

σz = 0.01 σz = 0.02

Proj Pert NPert Proj Pert NPert

Std(∆c) 0.00353 0.00352 0.00352 0.00704 0.00702 0.00702

Std(∆y) 0.00643 0.00643 0.00643 0.0129 0.0129 0.0129

Std(∆c)/Std(∆y) 0.549 0.549 0.549 0.548 0.546 0.546

Std(∆i)/Std(∆y) 1.85 1.85 1.85 1.84 1.84 1.84

E [Rf ] 0.0182 0.0181 0.0190 0.0163 0.0161 NaN

Std (Rf ) 0.00116 0.00115 0.00114 0.00232 0.00229 NaN

E [RE −Rf ] 0.0000821 0.000213 -0.000658 0.000653 0.000845 NaN

Std (RE −Rf ) 0.00221 0.00221 0.00221 0.00440 0.00440 NaN

SR (RE) 0.0371 0.0964 -0.297 0.148 0.192 NaN

E (log V/C) 3.01 3.00 2.94 2.31 2.12 NaN

Table 3: Simulation moments for both projection (5th order) and perturbation (3rd order) methods, for

σz = {0.01, 0.02}, γ = 5 and β = 0.998. Simulations are quarterly and financial moments are

annualized.

We begin by considering the projection results in Table 3. As previously mentioned, the

model was calibrated to closely approximate the volatilities of log consumption and output

growth in annual pre-war data; σz = 0.01 was chosen to yield an output volatility slightly

lower than observed in quarterly data and ξ allows us to fix the ratio Std(∆c)/Std(∆y).

Hence, it is not surprising that the standard deviations of consumption and output are not
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drastically different than their counterparts in the data. The remaining moments are freely

determined, and in some cases are quite different from observed values. In particular, the

equity premium and its volatility are extremely low and the volatility of the risk-free is about

six to seven times smaller than what would be expected in the data. In fact, Kaltenbrunner

and Lochstoer (2010) find that while holding the Sharpe ratio of equity fixed, there is a

trade-off in matching the mean and variance of the equity asset and the volatility of the risk-

free. We emphasize that a simple modification to the model à la Croce (2006) (explicitly

parameterizing a time varying growth rate in the TFP process) can rectify some of these

issues. However, in order to highlight our computational results, we favor parsimony and

forsake the additional state variable.

The remaining columns of Table 3 report simulation results for perturbation, for both

the case where Rf
t and log(Vt/Ct) are computed with a direct local approximation (the

column denoted ‘Pert’) and where they are computed nonlinearly with the local solutions

of the value function and consumption policy (the column denoted ‘NPert’). Regardless

of the solution method and the value of σz, we see that a third order perturbation yields

quantity dynamics that are almost identical to those of projection. The same is not true of

asset pricing moments and log(Vt/Ct). When σz = 0.01, both variants of the perturbation

method generate simulated moments that are in close agreement with projection, the one

exception being the equity premium, which is extremely close to zero in all cases. However,

increasing the TFP volatility to σz = 0.02 renders the nonlinear perturbation unable to

compute asset prices and log(Vt/Ct). The reason is that in the presence of higher volatility,

instability of the value function solution results in negative values under a radical or log

function, precluding our ability to compute the corresponding moments. These values are

reported as ‘NaN’. Alternatively, with the direct perturbation, obtained by augmenting the

perturbation conditions with Equations (26a) and (26b), we are able to drastically improve

the simulated moments of the local method; in this case, column ‘Pert’ shows that the local

method only exhibits slight deviations from the global method for asset prices, again with

the exception of the equity premium which is very close to zero in both cases. The deviation

for log(Vt/Ct) is slightly larger, but not horrendous. As we mention in Section 2, there is no

theoretical reason to resort to direct approximations for ancillary model variables; in fact,
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if the solutions for Vt and Ct were good enough, any nonlinear function of them would also

yield a highly accurate approximation. However, as we will see below, perturbation delivers

a poor solution of Vt when σz is high. The result is that a direct local approximation of Rf
t

and log(Vt/Ct) reduces the dependency of these variables on the value function and improves

their accuracy.

3.2.2 High Volatility

Asset pricing papers that match moments of annual, pre-war data sets are too numerous to

cite. Table 4 reports simulation results for both projection and perturbation methods when

σz = {0.03, 0.04}, the latter being a value that conforms to pre-war, annual parameteriza-

tions. As before, γ = 5 and β = 0.998.

σz = 0.03 σz = 0.04

Proj Pert Npert Proj Pert NPert

Std(∆c) 0.0105 0.0105 0.0105 0.0140 0.0138 0.0138

Std(∆y) 0.0193 0.0193 0.0193 0.0257 0.0257 0.0257

Std(∆c)/Std(∆y) 0.547 0.543 0.543 0.543 0.537 0.537

Std(∆i)/Std(∆y) 1.82 1.83 1.83 1.80 1.81 1.81

E [Rf ] 0.0130 0.0127 NaN 0.00847 0.00779 NaN

Std (Rf ) 0.00345 0.00343 NaN 0.00455 0.00468 NaN

E [RE −Rf ] 0.00166 0.00195 NaN 0.00299 0.00370 NaN

Std (RE −Rf ) 0.00651 0.00654 NaN 0.00855 0.00860 NaN

SR (RE) 0.254 0.299 NaN 0.350 0.430 NaN

E (log V/C) 1.44 0.663 NaN 0.561 -1.38 NaN

Table 4: Simulation moments for both projection (5th order) and perturbation (3rd order) methods, for

σz = {0.03, 0.04}, γ = 5 and β = 0.998. Simulations are quarterly and financial moments are

annualized.

The previous discrepancies now become exaggerated: while the global method and both

variations of the local method show high agreement for quantity dynamics, solutions for asset
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moments and log(Vt/Ct) diverge as σz increases. As before, nonlinear perturbation is unable

to compute asset prices and log(Vt/Ct) for high σz, but the direct local approximations

ameliorate the problem. However, in the most extreme case of σz = 0.04, even the direct

perturbation and projection show moderate discrepancies for asset prices, and for both values

of σz the means of log(Vt/Ct) are quite different.

The inability of the local method to approximate log(Vt/Ct) is crucial for welfare analysis.

For example, to compute the welfare costs of TFP volatility, one would simply evaluate the

difference log(V l
t /C

l
t) − log(V h

t /C
h
t ), where V l

t and C l
t are computed under low volatility

and V h
t and Ch

t are computed under high volatility. The resulting value is interpreted as

the percentage change in the agent’s utility (as a fraction of consumption) as volatility

changes. These differences are easily computed from the values reported in Tables 3 and 4:

according to Chebyshev projection, a one percent increase in TFP volatility from σz = 0.03

to σz = 0.04 results in a welfare loss of 1.44 - 0.561 = 0.879, while the analogous computation

due to perturbation is 0.663 + 1.38 = 2.04 – more than twice the value of the global method.

We will see that the findings in this section are a result of the fact that perturbation is a

local approximation around the deterministic steady state (σz = 0), and that the value func-

tion exhibits a high degree of curvature in the direction of σz. For this reason, perturbation

has difficulty achieving an accurate approximation as the calibrated value of σz moves away

from zero. We examine this result in more detail below, but first consider a very simple

example that provides intuition for the source of the discrepancy.

3.3 Motivating Example

We now consider the very simple example of approximating the square root function, f(x) =
√
x, with a Taylor polynomial of various orders1. Judd (1998) provides similar numerical

results for x1/4. Generally speaking, any (analytic) continuously differentiable function can

be written as,

f(x) =
∞∑
i=0

f (i)(x0)

i!
(x− x0)i, (30)

1We thank George Tauchen for suggesting this basic example to illustrate the intuition of our main result.
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for x in a neighborhood of x0, where f (i) denotes the ith derivative of f and where f (0) = f .

For the square root function, it is not difficult to show that,

f (i)(x) = (−1)i+1 (2i− 3)!!

2i
x

1
2
−i, (31)

where n!! denotes the double factorial of n 2. Thus, the square root function can be written

as

√
x =
√
x0 +

∞∑
i=1

(−1)i+1 (2i− 3)!!

2ii!
x

1
2
−i

0 (x− x0)i

=
√
x0 +

∞∑
i=1

ai(x− x0)i, (32)

where ai = f (i)(xo)
i!

. For a general power series of the form in Equation (32), the radius of

convergence is defined as the value r ∈ R+
such that (32) converges for |x− x0| ≤ r; that is,

the radius of convergence identifies the neighborhood for which the function converges. A

simple way to determine the radius of convergence is

r = lim
i→∞

∣∣∣∣ aiai+1

∣∣∣∣ . (33)

Hence, for the square root function (assuming x0 > 0),

rsq(x0) = lim
i→∞

∣∣∣∣∣∣ (−1)i+1 (2i−3)!!
2ii!

x
1
2
−i

0

(−1)i+2 (2i−1)!!
2i+1(i+1)!

x
1
2
−i−1

0

∣∣∣∣∣∣
= lim

i→∞

(2i−3)!!
2ii!

x
1
2
−i

0

(2i−1)!!
2i+1(i+1)!

x
1
2
−i−1

0

= lim
i→∞

2(i+ 1)

2i− 1
x0

= x0. (34)

From Equation (34) we understand that the Taylor series expansion of the square root

function around the point x0 is only guaranteed to converge for x ∈ (0, 2x0). Outside of this

range, the series expansion will diverge.

2For n odd, n!! is the product of all odd numbers less than or equal to n. Similarly for n even. The

double factorial of 0 and -1 are defined to be 1.
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Intuitively, the radius of convergence for a Taylor series depends on the rate at which the

derivatives of the target function diminish at the point of approximation. For a function with

little shape, the high order derivatives drop quickly to zero, forcing r to be quite high – the

extreme case being a polynomial of finite order, with an infinite radius of convergence (the

Taylor series converges for all x ∈ R). Conversely, in cases where the high order derivatives

do not exhibit quick decay, the radius of convergence is low, resulting in a Taylor series

expansion which is only applicable over a small portion of the domain3.

To illustrate this concept, we approximate the square root function at two values: x0 = 1

and x0 = 2. In the first case the radius of convergence is 1 and we anticipate that a

Taylor series approximation will only be appropriate in the range (0,2). Figure 1 depicts

the first nine Taylor polynomial approximations of f(x) =
√
x around x0 = 1. Clearly, the

polynomial approximations are adequate for x ∈ (0, 2), but diverge outside of that range;

while increasing the order of approximation to arbitrary levels allows us to fit the function

at any desired level of precision over the interval (0,2), the approximations become erratic

outside of that interval for high orders. In the second case, the radius of convergence is 2,

indicating that the Taylor series will converge on the interval (0,4). Figure 2 depicts the first

nine Taylor polynomial approximations around x0 = 2, confirming our prior intuition.

This example illustrates that there is an inverse relationship between the degree of cur-

vature of a function at a point of interest and the size of the interval (around that point)

over which a Taylor polynomial approximation is adequate. It is precisely this concept which

drives the main result of our paper, as we will see below.

3.4 Graphical Evidence

We re-consider the model solutions of Section 3.2. Figure 3 shows policy function approx-

imations for 5th order Chebyshev projection and perturbation of orders 1,2 and 3, all for

the case of σz = 0.04 and β = 0.998 (for Ct and Vt, the ‘Pert’ and ‘NPert’ solutions are

identical). Figure 4 depicts similar approximations for the value function.

These plots clarify the results reported in Table 4: both projection and perturbation

3den Haan and de Wind (2009) provides a more general and thorough discussion of the relationship

between polynomial approximations and the radius of convergence.
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Figure 1: First nine Taylor polynomial approximations of
√
x around x0 = 1.

produce policy functions that are in close agreement, while there is a wide discrepancy in

their solutions for the value function, even among among the different order perturbations.

Since the quantity dynamics of the solutions are not sensitive to the value function, it is not

surprising that the simulated macroeconomic moments of the two methods do not differ by

a great amount. However, the risk-free rate and log(Vt/Ct) both depend directly on the level

and shape of the value function, and hence are quite different across methods. Figures 5

and 6 depict the same approximations for the case of σz = 0.01, and demonstrate that when

the TFP volatility is low, the solution methods are far more similar, as expected from the

simulation output in Table 3. In this case, the consumption policy approximations overlap

to an even greater extent and the value function approximations are separated by only a
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Figure 2: First nine Taylor polynomial approximations of
√
x around x0 = 2.

(relatively) small level shift. This latter shift diminishes as we shrink σz toward zero.

We note that in our model it is possible to analytically solve for the return on equity

in terms of aggregate variables (see Appendix B), and hence it is unaffected by poor local

approximations of the value function. It follows that local approximations of the equity

premium are only affected by the value function via the risk-free rate. This result may not

extrapolate to more general models where analytical expressions of the return on equity are

not available.

To understand why the value functions for the two solution methods diverge for large σz,

it is useful to think of the value function and consumption policy as functions of both the state

variable, K̂, and the TFP volatility parameter, σz. Figures 7 and 8 show policy and value
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Figure 3: Consumption policy approximations for Chebyshev projection (5th order) and perturbation of

orders 1,2 and 3, where σz = 0.04 and β = 0.998.

function approximations for 5th order Chebyshev projection and 3rd order perturbation,

when σz ∈ [0, 0.04]. Thus, the approximations in Figures 3 – 6 are simply cross sections

(fixing σz) of the functions depicted in Figures 7 and 8. It becomes apparent from inspecting

these surfaces that the value function exhibits a high degree of curvature in the direction of

σz, with the amount of curvature increasing as σz approaches zero, whereas the consumption

policy is quite flat. As a result, similar to the square root function we previously considered,

we anticipate that the radius of convergence of a Taylor polynomial approximation of the

value function will diminish for approximations centered at points very close to σz = 0.

This is a exactly what a perturbation solution is: a local Taylor approximation at σz =

0. It follows that, for the particular case of the value function, we have no guarantee of
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Figure 4: Value function approximations for Chebyshev projection (5th order) and perturbation of orders

1, 2 and 3, where σz = 0.04 and β = 0.998. Note the widely different scales on the vertical axes.

convergence for values of σz far away from zero, and in fact we should not be surprised to

see divergent behavior, as suggested by the previous plots. This result is congruent with den

Haan and de Wind (2009) who find that nonlinearities in DSGE models can render high order

perturbation solutions that are explosive. On the other hand, the radius of convergence for

the consumption policy is likely to be quite large, and we expect local Taylor approximations

to converge for a wide range of σz – this is corroborated by Figure 7, where we are unable

to distinguish the two surfaces.

The upshot of the foregoing results is that a global projection method is more robust to

value function curvature, since it seeks to minimize an error equation expressed in terms of

the true (unknown) value function, rather than approximating the truth at a distant focal

point.

3.5 Solution Evaluation and Sensitivity Analysis

In the preceding analysis we have merely shown some conditions under which the two solution

methods we consider are different; we have not formally investigated their relative accuracy.

We now undertake the important task of determining which of the solutions is a closer

approximation to the unknown truth and do so for a variety of model parameter values.

While our primary evaluation criterion will be Euler equation errors, we will conclude the
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Figure 5: Consumption policy approximations for Chebyshev projection and perturbation of orders 1,2 and

3, where σz = 0.01 and β = 0.998.

section with a discussion of the den Haan-Marcet statistic (den Haan and Marcet (1994)).

3.5.1 Pricing Errors

The fundamental asset pricing equation is 1 = E t[Mt+1Rt+1], where Mt+1 is the time t

stochastic discount factor, and Rt+1 is the return for any asset between t and t + 1. Thus,

from Equation (20b) we have

1 = E t[Mt+1R
e
t+1]

= E t

Mt+1 φ
′

(
Ît

K̂t

)(α− 1)Ŷt+1 + Ĉt+1

K̂t+1

+
φ
(
Ît+1

K̂t+1

)
+ 1− δ

φ′
(
Ît+1

K̂t+1

)
 . (35)
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Figure 6: Value function approximations for Chebyshev projection and perturbation of orders 2 and 3,

where σz = 0.01 and β = 0.998.

Since the stochastic discount factor Mt+1 incorporates current consumption, Ct, in its denom-

inator (see Equation (17)), we can interpret pricing errors as a fraction of contemporaneous

consumption. As suggested by Judd and Guu (1997), Aruoba et al. (2006) and Caldara

et al. (2009), base 10 logarithms of pricing errors in Equation (35) can be interpreted in

the following manner: a value of -1 corresponds to a 10% consumption error, a value of -2

corresponds to a 1% consumption error, a value of -3 corresponds to a 0.1% consumption

error, etc.. Combining Equation (35) with the long simulations of εt (see Equation (21))

used in Section 3.2, we can compute the mean of the pricing errors implied by the model,

for each solution method. The expectation is approximated by a Gauss-Hermite quadrature

rule, with the order chosen so as to exactly compute the integral for the finite polynomial so-

28



Consumption Policy

20

40

60

80

100
0.00

0.01

0.02

0.03

0.04

1.0

1.5

2.0

2.5

3.0

3.5

K

sigma

C

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 7: Consumption policy approximations for 5th order Chebyshev projection and 3rd order pertur-

bation, for σz ∈ [0, 0.04].

lutions. The pricing errors are reported graphically in the upper rows of Figures 9 - 12. The

individual plots depict how mean Euler equation errors vary with β, where β ∈ [0.980, 0.998]

– in general, perturbation solution quality degrades as β rises. Moving across the upper

rows, from left to right, we are then able to observe the effect of increasing risk aversion,

γ, and moving between the four figures we observe the effect of increasing TFP volatility,

σz – as with β, the quality of the perturbation solution degrades as each of these parame-

ters increases. At the lower extreme, in Figure 9, when σz = 0.01 and γ = 2, a 3rd order

perturbation dominates a 5th order projection for virtually all values of β that we consider.

However, both solutions produce errors that most would consider economically insignificant

(less than 0.01% of consumption). Holding σz fixed and increasing γ, the perturbation errors

rise to levels as high as 1% of consumption, for high values of β. These qualitative results

become more pronounced in Figures 10 - 12, where at the upper extreme (σz = 0.04 and

γ = 10), perturbation errors exceed 10% of consumption, for high values of β. It is this
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Figure 8: Value function approximations for 5th order Chebyshev projection and 3rd order perturbation,

for σz ∈ [0, 0.04]. The lower surface corresponds to perturbation.

final case that deserves particular attention: models that calibrate to annual, pre-war data

generally require high values of σz (on the order of 0.04) and β (on the order of 0.998 or

above) in order to match output volatility and the level of the risk-free rate. We see that

these calibrations, matched with moderate levels of risk aversion (above 5) can lead to poor

local approximations. On the other hand, models that calibrate to quarterly, post-war data

typically obtain much smaller values of σz (on the order of 0.01 or below), and do not suffer

from poor local approximations.

The fundamental characteristic driving these results is the curvature of the value function

with respect to TFP volatility: as shown in Figure 8, the value function can exhibit a high

degree of curvature in the direction of σz. In cases where the curvature is extreme, a local

method such as perturbation will have difficulty approximating the function at points far

from the deterministic steady-state (the locus of approximation), a result which is corrobo-

rated by Figures 9 - 12. This is especially relevant for models that require a high calibrated
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Figure 9: Mean log10 Euler equation errors (first row), mean risk-free rate (second row) and mean log

ratio of value function to consumption policy, plotted as functions of β for different values of γ.

σz = 0.01 in all cases.

value of σz. The parameters γ and β have an effect insofar as they increase the sensitiv-

ity of the value function to changes in σz; i.e. the sensitivity increases with each of these

parameters.

The second and third rows of Figures 9 - 12 depict the mean of Rf
t and the mean of

log(Vt/Ct), respectively, across simulations. As in Section 3.2, we compute these values

both nonlinearly, via Equations (17), (25a) and (25b), and directly, via Equations (26a) and

(26b). As with the Euler equation errors, the nonlinear perturbation risk-free rate deviates

dramatically from that of projection as β, γ and σz rise. This discrepancy is most pronounced

for σz = 0.04, γ ≥ 5 and β ≥ 0.99. On the other hand, the direct perturbation computation
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Figure 10: Mean log10 Euler equation errors (first row), mean risk-free rate (second row) and mean log

ratio of value function to consumption policy, plotted as functions of β for different values of γ.

σz = 0.02 in all cases.

appears to be quite similar to projection for all parameter values. In truth, the local method

exhibits a small amount of divergent behavior as well, but the graphical evidence is washed

out by the scale of the nonlinear deviation. The moments in Tables 3 and 4 give an idea of

the magnitude of divergence.

The reason for the discrepancy in the risk-free rate computations is the same as for the

Euler equation errors: for high values of β, γ and σz, perturbation provides a poor approxi-

mation to the value function. Since the risk-free rate depends directly on the value function

in models with recursive utility (see Equations (25a) and (17)), it is likewise poorly approx-

imated by perturbation, insofar as the value function approximation is poor. This effect is
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Figure 11: Mean log10 Euler equation errors (first row), mean risk-free rate (second row) and mean log

ratio of value function to consumption policy, plotted as functions of β for different values of γ.

σz = 0.03 in all cases.

most severe when we compute the risk-free fate nonlinearly. Viewed from the opposite per-

spective, if our approximations for Ct and Vt were highly accurate, a nonlinear computation

of Rf
t would likewise be highly accurate. Thus, the large deviations in Figures 10 - 12 are just

further evidence of the poor local approximation of Vt for high β, γ and σz. The interesting

aspect of our results, though, is that we can ameliorate the effect of the value function by

directly computing the risk-free rate via a Taylor expansion. This latter method anchors

the risk-free at its deterministic steady state and weakens the computational relationship

between Rf
t and Vt.

The final rows of Figures 9 - 12 lend more insight to the foregoing results. As mentioned
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Figure 12: Mean log10 Euler equation errors (first row), mean risk-free rate (second row) and mean log

ratio of value function to consumption policy, plotted as functions of β for different values of γ.

σz = 0.04 in all cases.

in Section 3.2, we include the log of Vt/Ct in our analysis, since this variable is instrumental

in welfare evaluations. Once again, the approximations deteriorate as β, γ and σz increase,

which we attribute to the poor local approximation of the value function. However, in the

case of log(Vt/Ct) the deviations are more severe (for the direct Taylor expansion method)

than for the risk-free. The reason for this is that the risk-free rate depends on the value

function in both numerator and denominator (see Equations (17) and (25a)), which mitigates

the error propagation of the value function approximation. The same could be true of

welfare computations log(V ∗t /C
∗
t )− log(V ∗∗t /C∗∗t ) when V ∗t and V ∗∗t are computed with the

same σz (i.e., welfare effects are evaluated for a variable other than σz). However, since the
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approximations of Vt are likely to be very different for different values σz (it will be well

approximated for low volatility and badly approximated for high volatility), we expect that

welfare computations attributed to TFP volatility will be very poorly approximated.

As a final note, we repeated all of the previous analysis for µ = 0 and ψ = 0.5; these

changes only caused slight shifts, leaving the results above qualitatively the same. For space

considerations, we do not include them. We recognize, however, the particular interplay

between β and µ: lowering the growth rate increases the model’s ability to tolerate high

values of β before local approximations become very poor. That is, we can think of the

model as depending on the single growth adjusted subjective discount factor β∗ = β exp(µ)

– lowering µ or β effectively decreases β∗, and hence the model’s sensitivity to σz.

3.5.2 den Haan-Marcet Statistic

Since agents in our model have rational expectations, the residual of the pricing equation,

ut+1 = 1−Mt+1R
e
t+1 (36)

should not be in the time t information set. That is, under the null hypothesis that we have

correct solutions for the value and policy functions, β = 0 in regressions of the form

ut+1 =
n∑
i=1

βixi,t + ζt+1, (37)

for t = 1, 2, . . . , T , where xi,t represent variables in the time t information set. den Haan

and Marcet (1994) suggest testing this hypothesis by constructing a Wald-type statistic

DM(n) = u′X

[
T∑
t=1

xtx
′
tζ̂

2
t+1

]−1

X ′u (38)

where xt is the vector of time t regressors, x1,t, x2,t, . . ., xn,t, X is the matrix with rows x′t,

and ζ̂t+1 = ut+1 − x′tβ̂. If the null hypothesis is true, DM(n)
a∼ χ2(n); however, since the

probability of attaining the true solution is zero, we expect that large values of T will force a

rejection of the test. To account for this, den Haan and Marcet (1994) compute DM(n) for

multiple simulations of u and determine the proportion of times that the statistic falls within

certain critical limits of the χ2(n) distribution. If the approximate solutions are good, the
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proportions within these bounds should be close to the actual area under the χ2(n) density

function.

In our implementation of the Den Haan-Marcet statistic, we regress the price residuals on

a constant and five lags of both log consumption growth and log productivity growth (hence,

n = 11). We fix β = 0.998 and simulate 500 data sets of T = 3000 quarterly observations

(750 years of data) and report the proportion of time that the value from Equation (38) is

above or below the 5% points of the χ2(11) density in Table 5. This Wald-type diagnostic

σz = 0.01 σz = 0.04

γ = 2 γ = 5 γ = 10 γ = 2 γ = 5 γ = 10

Projection (0.052, 0.054) (0.052, 0.052) (0.050, 0.052) (0.052, 0.056) (0.054, 0.062) (0.050, 0.07)

Perturbation (0.058, 0.052) (0.050, 0.058) (0.006, 0.338) (0,0) (0,0) (0,0)

Table 5: Den Haan-Marcet statistics, computed for 500 simulations of T = 3000 quarterly observations.

The numbers in the parentheses represent the proportion of times the statistic was below and

above, respectively, the 5% and 95% percent points of the χ2(11) density. In all cases, β = 0.998.

corroborates the main result of the paper: in all cases the global Chebyshev projection

method provides a very accurate solution to the model, whereas a high order perturbation is

only adequate for small values of the TFP volatility or where other model parameters (such

as γ) eliminate the sensitivity of the value function to σz.

4 Conclusion

We have shown that choice of solution method can be critical for production-based asset

pricing models with recursive utility. In particular, local perturbation methods have the

potential to be inadequate when TFP volatility is calibrated at high levels and when the risk

aversion and the discount factor parameters are sufficiently high to make the value function

very sensitive to TFP volatility. A global projection method, on the other hand, does quite

well under a variety of circumstances. The reason for this result is that the value function

in our model has the potential to be highly curved in the direction of TFP volatility, σz. In

fact, the degree of curvature can be high enough that a local Taylor approximation of the
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value function is only suitable over a very small region around the point of approximation.

Since perturbation is equivalent to a local Taylor expansion around the deterministic steady

state (σz = 0), we find that in certain cases the resulting solution diverges for large σz, even

for high order approximations. A global approximation method, however, such as Chebyshev

projection, is not susceptible to these issues, since it seeks to minimize an error function at

a desired level of the TFP volatility.

We show that parameter choice and model calibration is pivotal to the results above. For

models that calibrate to quarterly, post-war data, typical values of σz and β are low enough

to eliminate value function sensitivity to TFP volatility, rendering perturbation solutions

perfectly acceptable. Caldara et al. (2009) compares perturbation and projection methods

for such parameterizations and demonstrates that both are adequate. Our results diverge

from those of Caldara et al. (2009) when we consider parameter values that are relevant

for models which calibrate to annual, pre-war data. For these latter parameterizations, the

quality of high order perturbation methods degrade.

Local approximations of asset prices can be improved by augmenting the system of per-

turbation conditions and directly computing expansions for the risk-free rate. This method

of approximation weakens the dependency of bond prices on the poorly approximated value

function, and results in a more accurate solution. The same is less true of welfare costs:

while very small improvements are also observed from direct computations, they are not

nearly as striking.

As with many macroeconomic models, we find that the stochastic steady-state distri-

bution of capital is far away from the corresponding deterministic stead-state value, K̂ss.

One consideration is to incorporate this information in the perturbation approximation by

expanding the Taylor polynomial around the mean of the steady-state distribution, rather

than K̂ss. However, we emphasize that while the value function is highly curved in the

direction of σz, it is relatively linear in the direction of the K̂ss, and hence a first order

shift in the capital direction is likely to have little effect on a problem that is caused in

the volatility direction. Similar expansions around different values of σz are not possible, as

analytic expressions for the derivatives of the perturbation system can only be found at the

deterministic steady-state (σz = 0).
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In contrast to the value function, the consumption policy is relatively linear in the direc-

tion of σz and more curved in the direction of capital. As a result, a local Taylor approx-

imation converges over a large range of values of σz, and perturbation has little difficulty

in providing good approximations of the endogenous choice variable. For this reason, our

results would have little bearing on the practitioner who is only interested in macroeconomic

quantities: since quantity dynamics are not sensitive to the value function, perturbation

delivers adequate solutions, even for fairly large values of σz. Aruoba et al. (2006) only

considers quantity dynamics and finds that perturbation is competitive with global solution

methods.

Our results are important for individuals who are jointly interested in quantity dynamics

and other variables such as asset prices and welfare costs . Since asset prices in a recursive

utility model depend crucially on the value function, our choice of solution method has

an important impact on their moments (risk-free rates, risk premia, their volatilities, etc.)

insofar as the method improves the value function approximation. The same is true of other

variables that are tightly linked to the value function, such as welfare costs. While we don’t

emphasize our particular model as a solution to the joint problem of matching macroeconomic

and asset pricing data, we feel that extensions of the model have great potential, and that

the problems we have uncovered are likely to be present in other production-based models

with recursive utility.

Our general caution is for practitioners to be aware of the potential disadvantages of a

local approximation method and, when feasible, to compare it to a global method to ensure

adequacy. While we find that Chebyshev projection is competitive with perturbation in terms

of computing time for the case of a single state variable, such is not likely to be true of models

with many more state variables; as the number of variables increases, a global method will

suffer from the curse of dimensionality. In cases such as these (see, for example, Rudebusch

and Swanson (2008)) perturbation has the benefit of computational simplicity and, hence,

is a natural candidate for an estimation procedure. However, for models where perturbation

cannot adequately approximate the value function, and where financial moments or welfare

costs are of interest, no degree of computational simplicity can compensate for an incorrect

solution. For this reason, we suggest using perturbation in cases where solution adequacy
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can be verified against a more robust benchmark.

39



A Adjustment Cost Parameters

We define the parameters α1 and α2 of the adjustment cost function. We want to specify

a function that does not impose adjustment costs in the deterministic steady state; i.e. a

function that satisfies

φ(xss) = xss (39)

and

φ′(xss) = 1, (40)

where xss = K̂α
ss−Ĉss
K̂ss

. First, in the deterministic steady state, Equation (20c) becomes

K̂ss =
1

Ẑss

(
(1− δ)K̂ss + φ

(
K̂α
ss − Ĉss
K̂ss

)
K̂ss

)
⇒ xss = φ−1(Ẑss − 1 + δ). (41)

Since φ′(x) = α1x
−1/ξ, Equation (40) is satisfied if α1 = x

1/ξ
ss . Substituting this value for α1,

Equation (39) is then satisfied if

α2 = xss −
α1

1− 1/ξ
x1−1/ξ
ss

= xss −
1

1− 1/ξ
xss

=
−1/ξ

1− 1/ξ
xss

=
1

1− ξ
xss.

Combining Equations (39) and (41), it’s clear that

xss = Ẑss − 1 + δ

= exp(µ)− 1 + δ,

from which we conclude

α1 = (exp(µ)− 1 + δ)1/ξ (42)

and

α2 =
1

1− ξ
(exp(µ)− 1 + δ) . (43)
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B Derivation of Return on Equity

The Lagrangian for the firm’s problem is:

max
{It,Kt+1,Ht}

E 0

[ ∞∑
t=0

Mt+1

{
(ZtHt)

1−αKα
t −WtHt − It

+ µt

(
φ

(
It
Kt

)
Kt + (1− δ)Kt −Kt+1

)}]
. (44)

The first order condition with respect to It is

−1 + µtφ
′
(
It
Kt

)
= 0,

which implies,

µt =
1

φ′
(
It
Kt

) . (45)

The first order condition with respect to Kt+1 is

−µt + E t

[
Mt+1 α(Zt+1Ht+1)1−αKα−1

t+1

]
+ E t

[
Mt+1 µt+1

(
(1− δ)− φ′

(
It+1

Kt+1

)
It+1

Kt+1

+ φ

(
It+1

Kt+1

))]
= 0. (46)

Using Equation (45) we substitute for φ′(It+1/Kt+1) in Equation (46) and rearrange to get

µt = E t

[
Mt+1

{
α(Zt+1Ht+1)1−αKα

t+1 − It+1

Kt+1

+ µt+1

(
φ

(
It+1

Kt+1

)
+ 1− δ

)}]
. (47)

Substituting for µt and µt+1, and recognizing Yt = (ZtHt)
1−αKα

t and It = Yt−Ct, we obtain

1 = E t

Mt+1φ
′
(
It
Kt

)(α− 1)Yt+1 + Ct+1

Kt+1

+
φ
(
It+1

Kt+1

)
+ 1− δ

φ′
(
It+1

Kt+1

)
 (48)

= E t

[
Mt+1R

I
t+1

]
, (49)

where

RI
t+1 = φ′

(
It
Kt

)(α− 1)Yt+1 + Ct+1

Kt+1

+
φ
(
It+1

Kt+1

)
+ 1− δ

φ′
(
It+1

Kt+1

)
 . (50)

Equation (49) is the standard Euler condition for the return on investment, RI
t+1. More-

over, since the production technology and adjustment costs satisfy constant returns to scale,

Restoy and Rockinger (1994) prove RE
t+1 = RI

t+1, where RE
t+1 is the unlevered return on

equity.

41



C Maximization Algorithm

We present the binary search algorithm that we use to select the optimal consumption value

in line (2.2) of the projection algorithm. This method exploits the monotonicity of the value

function with respect to Ĉt and converges very quickly. It is performed for each value in the

capital grid, K̂, at each step in the value function iteration where maximization is performed

(non-Howard steps).

1: Set τ c = 0.000001, εc = τc

10
, ∆c = 1, lc = 0, cmin = 0 and cmax = K̂α

i .

2: while ∆c > τ c do

3: c1 = cmax+cmin

2
and c2 = c1 + εc

4: for m = 1 to 2 do

5: Ĉ = cm

6: steps 2.2 – 2.2 of the projection algorithm

7: vi =

{
(1− β)Ĉ

1−γ
θ + β

(
Exp(K̂i, Ĉ)

) 1
θ

} θ
1−γ

8: end for

9: if v1 > v2 then

10: cmax = c1

11: else

12: cmin = c2

13: end if

14: ∆c = cmax − cmin

15: end while

16: Ĉ∗i = c1.
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