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Introduction

This paper compares solution methods for production-based asset pricing models with recur-
sive utility. In particular, we consider a standard neoclassical growth model with Epstein-
Zin-Weil utility. Bansal and Yaron (2004) demonstrates the importance of recursive util-
ity for explaining both asset prices and macroeconomic variables in a general equilibrium
endowment setting. More recent extensions to production economies, e.g. Croce (2006),
Campanale et al. (2010), Kaltenbrunner and Lochstoer (2010) and Rudebusch and Swanson
(2008), show similar promise in reconciling financial and quantity dynamics and are becom-
ing increasingly common in the literature. Accordingly, it is important to understand the
behavior of solution methods for these models, and our work contributes to the literature
along that dimension.

We focus on two standard methods of solution for dynamic stochastic general equilibrium
(DSGE) models: a global projection method using Chebyshev basis functions and a local
perturbation method of various orders. Aruoba et al. (2006) compares these solution methods
for a neoclassical growth model with constant relative risk aversion utility, and demonstrates
that both methods are broadly suitable. Our aim is to investigate the appropriateness of
these solution methods when utility takes a more general, recursive form. Notably, we find
that the two solution methods produce roughly equivalent implications for macroeconomic
quantities, but can be very different with respect to asset prices and welfare costs. This
discrepancy is exacerbated as the volatility of the total factor of productivity (TFP) is
increased.

Several considerations drive our results. First, the value function corresponding to
Epstein-Zin-Weil utility exhibits a high degree of curvature with respect to the TFP volatil-
ity; second, perturbation is a local Taylor approximation around the deterministic steady
state, where the TFP volatility is zero; and third, in the presence of recursive utility, asset
prices and welfare costs, not quantities, depend critically on the shape of the value function.
The upshot is that for models with high output volatility, perturbation attempts to approx-
imate a rapidly changing function at a locus (zero TFP volatility) that is far from the point

of interest (high TFP volatility). Taylor’s Theorem shows that the resulting approximation



error can be arbitrarily bad and can even increase with the order of approximation. Thus,
when the TFP is calibrated to have high volatility, the resulting approximation of the value
function obtained by perturbation can be very bad, yielding poor approximations for prices
and welfare costs.

In addition to the direct effect of TFP volatility on approximation quality, we investigate
the effect of other parameters. We find that the subjective discount factor, output growth
and risk sensitivity are also important for solution accuracy, but in a more indirect manner:
the solution methods diverge when these parameters increase the value function’s sensitivity
to TFP volatility. We describe the interplay between these parameters and solution accuracy.

Our problem dictates that, at a minimum, we must approximate the value function and
policy function of the endogenous choice variable (consumption). In theory, if our solutions
are sufficiently accurate, we can use them to accurately approximate any other variable in
the model, even if it depends on the value and policy functions in a nonlinear way. The
reverse is also true — a poor solution for either the value or policy functions will contaminate
approximations of other model quantities. However, in the case of perturbation, we find that
computing a local approximation of asset prices directly can ameliorate their dependency on
the (poorly approximated) value function and improve their accuracy. We show how this
modification can bring the model’s asset pricing implications far closer to those produced by
a global method. Unfortunately, the same result does not hold for welfare costs.

Caldara et al. (2009) compares these solution methods for a similar model with recur-
sive utility. Their results suggest that while global methods are numerically superior, local
methods are very accurate and strike an excellent balance between computation time and
accuracy. Our results diverge from theirs because we consider a more broad set of parameter
values - values which are often used in the asset pricing literature. That is, we are careful
to stress that the aforementioned results depend critically on the calibrated level of TFP
volatility. Hence, many asset pricing models which calibrate to annual, pre-war data will be
badly approximated with a perturbation method. On the other hand, models which spec-
ify much smaller values of output volatility (e.g. macroeconomic models which calibrate to
quarterly, post-war data, such as Caldara et al. (2009)) are likely to find perturbation to be

an adequate, and even preferred solution method.



When perturbation is accurate, it is often the preferred solution method since it is ex-
tremely fast and can be efficiently nested within an estimation framework. For the particular
problem we consider, the projection and perturbation methods are essentially equivalent in
computation time, as the model only entertains one state variable. However, if the complex-
ity of the model is increased (more state variables added), a global projection method would
quickly deteriorate in computing time due to the curse of dimensionality. This curse is the
relative disadvantage of a global method.

The results of this paper suggest that when using perturbation for production-based
asset pricing models, it would be wise to compare the results with a global solution method.
In particular, for models with a high calibration of TFP volatility, a global method, while
computationally more burdensome, is more suitable since it yields a superior approximant
to the value function.

This paper proceeds as follows. Section 1 describes our model in detail, Section 2 outlines
the solution methods applied to the model, Section 3 reports the results of the two solution

methods in addition to diagnostics that explore their accuracy and Section 4 concludes.

1 Model

We follow Kaltenbrunner and Lochstoer (2010) in specifying a basic neoclassical growth
model with Epstein-Zin-Weil utility. As mentioned in the previous section, this model is very
similar to that of Croce (2006), the primary difference being that Croce (2006) explicitly
specifies a long-run risk component in the total factor of productivity process. While Croce
(2006) does a better job of explaining both quantity and price dynamics, and while the
model of Kaltenbrunner and Lochstoer (2010) exhibits several deficiencies with respect to
asset prices, we choose the latter specification for two reasons. First, it is a more simple
generalization of the neoclassical growth model, obtained by substituting Epstein-Zin-Weil
utility for power utility, and nests the more standard model. Second, through appropriate
normalization, the model has only one state variable. This simplicity allows us to emphasize
the computational results with greater ease. We anticipate that the results will extend to

more complicated, and perhaps appealing, situations.



1.1 Preferences

Our economy admits a representative agent whose utility function follows Epstein and Zin

(1989) and Weil (1990):

1—

U(C)=(=AC7 +BEU (Con) "DH) 1)

where 0 < 8 < 11is the subjective discount factor, E; is the conditional expectations operator,
C; denotes aggregate consumption, C; = (Cy, Cyy1, . ..), 7 denotes the agent’s coefficient of
relative risk aversion, ¢ denotes the agent’s inter-temporal elasticity of substitution (IES),
and 0 = 11;1% A particularly desirable feature of this utility function is that it separates the
IES and risk aversion parameters, as opposed to the standard constant relative risk aversion
(CRRA) utility, where IES and risk aversion are inversely related. In theory, it is not clear
that there should be a tight link between these two parameters, as risk aversion is atemporal
while TES is temporal.

As shown in Epstein and Zin (1989) and Weil (1989), the log of the stochastic discount

factor, my,1, for these preferences is
0
M1 = Glnﬁ — EACH_l — (1 — g)ra,t—i-la (2)

where Acyyq denotes log consumption growth and 7,1 denotes the log gross return on
the aggregate wealth portfolio. Of particular importance is the presence of r,;41 in the
specification of the discount factor, which makes innovations to expected consumption growth
a priced risk factor; in the standard model with CRRA utility, # = 1 and the last term
disappears. It is this feature of Epstein-Zin-Weil utility that makes agents concerned about
shocks to expected future consumption growth and that allows us to amplify the equity

premium while evading the risk-free rate puzzle (Mehra and Prescott (1985)).

1.2 Technology

A single firm owns the capital stock and produces a consumption good via Cobb-Douglass

technology, using labor and capital as inputs:

Y, = (Z,H,)" K2,



where Z; is the stochastic total factor of productivity, H; denotes the number of hours worked,
K, represents capital and « is the share of capital in the production function. Under the
assumption that H is the agent’s total leisure endowment, it is clear that utility is going to be
maximized when H, = H, Vt, since H, does not appear in the utility function. Normalizing

H = 1, the production function simplifies to
Y, = 20K (3)

The log technology process, z; = In(Z;), evolves exogenously according to

Zy = ,Ut + 216, (4)
Zy = pZ 1+ 0.6, (5)
€ N(O, 1) (6)

We limit ourselves to the special case of ¢ = 1, since this allows us to retain only one state
variable; our computational results are similar for the case of persistent, yet trend stationary
z; (when |p| < 1). Hence, the log of TFP is a random walk with drift parameter p, and in

this special case shocks to technology are permanent.

1.3 Capital Accumulation

Following Jermann (1998), we allow capital adjustment costs in the accumulation equation

Kipn =09 (%) K+ (1-9)K,, (7)
where
¢(z) = 1_06—11/531711/)5 +ay (8)

is an increasing, concave function which induces large changes in the capital stock to be
more costly than successive small changes. The parameter ¢ governs the degree of concavity
and has the desirable feature that as £ — oo, ¢(z) becomes the identity function (with
an appropriate specification of «; and as); that is, capital adjustment costs disappear. At

the other extreme, as £ — 0, [, — 0, V¢, and ¢(z) = exp(u) — 1 + 9, allowing us to



obtain an endowment economy where all output is consumed each period and the capital
stock grows deterministically at rate exp(u). Hence, for intermediate values, the adjustment
cost parameter, £, allows us flexibility in matching the relative volatilities of consumption
and output. As mentioned above, the remaining parameters are defined so as to eliminate
adjustment costs in the deterministic steady state: a; = (exp(p) — 1 4+ §)V¢ and ap =

1—i§(exp(u) — 1+ 0) (see Appendix A for a derivation).

1.4 Equilibrium
In equilibrium, the aggregate resource constraint is binding:

In this basic environment, the welfare theorems are satisfied and the solution to the social

planner’s problem yields the same allocations as a competitive equilibrium. The planner’s

problem is
V(K. Z) = max W(C, Kip1)To (10a)
subject to
Kiy = 6 (Ztl_aKTf_Ct) Ko+ (1—8)K,, (10b)
where
W(Ch Kiir) = (1= )G 7 + B (B¢ [V(Kirs Zei) ) (11)

Hence, the planner maximizes

0 I
£= WGt 0 (o) 6 0= 1 i "
t
over Cy and Ky.1, where
Zy = Zyyexp(p+ 0.61), €~ N(0,1). (13)



The resulting first order conditions are

oL et o (LY
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where C’h Kt—',—l and )\, are the optimal values of C}, K;,1 and A, ét—i—l = C’t+1| Koot S\tﬂ =
;\t+1|}“(t+1a Yt—f—l = Ztliakfﬁ.l, Iy =Y, — C, jt—f—l = Yt+1 - CV’t+17 Vi = V(Ky, Zy), ‘Zt+1 =
V(Ki1, Zeyr), Wy = W(Cy, Ku41) and where Equation (14c) follows from (14b) by the
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=A K, tol—)+1-6). (15
Ctakt+1,5\t ' <¢ (Kt Kt ¢ Kt ( )
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Substituting Equation (14a) into (14c) and recognizing that W, Koo = Vis1 » we obtain

envelope theorem:

ov, oL

0K, 0K,

the intertemporal Euler equation

~ -~ M ft 1
et (@ — )Yy +Cry | @ (K:H) +1-9 _
B [ Mind' (2 i v : —1 (16)
t Ky & ([{(t-&-l )
t+1
where
G\ T
My = 6( g1> T (17)
’* (B [Via']) 7

is an alternative expression for the Epstein-Zin-Weil stochastic discount factor, equivalent

to exp(myy1) in Equation (2). As shown in Appendix B, the return on equity is

. T
I — 1Y, P\xey ) T1-0
t) (a )t+1+ct+1+ <K+> (18)
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which is the term scaling the stochastic discount factor in Equation (16). Hence, the Euler
equation can be written compactly as Et[Mt+1R£|_1] = 1, for an appropriate definition of
Rﬂl in terms of optimal values. This expression for the return to equity will be useful when
evaluating the quality of model solutions.
To preserve stationarity in the economy, we normalize all variables by the level of the
contemporaneous technology process:
(kB B0y = {55 2o L 2 T (19
Alternatively, we could have normalized by Z; 1, but the former specification results in only
one state variable — a feature that allows us to place emphasis on the computational results.
The normalized system of equilibrium conditions can then be expressed as (suppressing the

Z notation for optimal values of x)

V(K - ((1 —9)C 7 +8 (B [ 257 V(R ]) ) =0 (20)
~ ~ ~ Tit1
E; | M (/5/ 7t (a )AtH t Ot + <Kt+ >f —1=0 (20b)
K, K1 & <f(t—“)
t+1

Sl

t+1

Ry — —— ((1 _ R, +¢( t)fQ) — 0 (20¢)

where

Z\t = exp(,u + Uz€t>7 Ex ™~ N(07 1) (21>

2 Solution Methods

We now describe the two methods we use to solve the model of the previous section.

2.1 Perturbation

Perturbation methods, suggested for economic models by Judd and Guu (1997) and Judd
(1998), and widely popularized by Schmitt-Grohé and Uribe (2004), build an asymptotically



valid polynomial approximation of a function around a point where the solution is known.

In general notation, perturbation seeks a local approximation to a function, F', where
F(x(e),e) =0, (22)

and where F'(2(0),0) is known. The typical specialization in economics is for F' to represent

a system of nonlinear stochastic difference equations,

F(x(e),e) = E4[f(zi31(e), x4 (), €)] = 0, (23)

where the deterministic steady state, E[f(2:11(0),2:(0),0)] = f(2ss, Xss,0) is known. The
canonical economic example is the neoclassical growth model, where f is a system of equa-
tions including the inter-temporal Euler equation and constraints, and where the polynomial
approximation to f is a Taylor expansion. However, there is no a priori reason to restrict our
attention to the inter-temporal Euler equation; since we are interested in computing financial
moments and since bond prices in a recursive utility model depend on the value function, it
is natural for us to approximate the value function directly. Judd and Guu (1997) and Judd
(1998) are early examples of using the value function to generate perturbation conditions
and van Binsbergen et al. (2008) provides an argument for this approach. Our particular
solution method utilizes both the value function and the intertemporal Euler equation.

We use system (20) to build approximations of the value and policy functions:

Voer(K Z VO K — K)ol (24a)
Coent(K Z CUNK — K)ol (24D)
where
i) _ (L) 0V (24c)
” i) 9K, 00, |, |
and
1+
Gt — (L) oG (24d)
) oK dio. |,




To obtain these approximations, we take successive derivatives of Equations (20a) and (20b)
with respect to [A(t and o, and evaluate the resulting systems of equations at the deterministic
steady state to obtain closed form solutions for the coefficients in Equations (24¢) and (24d).

For example, Equations (20a) - (21) evaluated at the deterministic steady state contain
enough information to determine ZSS, l?ss, \A/s(so’o) and @é?o). Taking first derivatives (with
respect to K; and ) of Equations (20a) and (20b) and again evaluating at the deterministic
steady state allows us to solve for ‘75(51,0)7 \78(50’1), CHY and OOV, Continuing in this fashion
leads to the approximations in Equations (24a) and (24b), where the order of approximation
of is equivalent to the number of times we have differentiated Equations (20a) and (20b).
As mentioned in Aruoba et al. (2006), the first order solution involves a quadratic matrix
equation, but each order of approximation thereafter only necessitates the solution of a
linear system. Hence, higher order solutions only require a matrix inversion, albeit of rapidly
increasing size.

With approximations \Z,ert(l/(\' ,0,) and épm(f( ,0,) in hand, we can compute any other
variable in the economy, where the accuracy of the approximation of those variables will
depend on the underlying accuracy of our approximations for V; and C;. However, we
can also approximate other variables of interest by augmenting system (20) with additional
equilibrium conditions. In our case, we are interested in approximating both the risk-free

rate and log(V;/C}) (which we will use in computing welfare costs). The requisite equilibrium

conditions are

Rl =B [Mya] ™ =0 (25a)
LV, — log (?; /@) ~0. (25b)

Adding Equations (25a) and (25b) to system (20) allows us to obtain approximations

— )~ o~
Rlpn(K 0. = Y RI (K = Ko)'ol (262)
0, J
LVCpn(R,0.) = S LVOL (R = R.,)io (26h)

,J

as outlined above.
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2.2 Projection

Similar to perturbation, projection methods seek a polynomial approximation to a function,
F, as in Equation (22), or more commonly to the special case, f, as in Equation (23).
However, rather than using the known solution at € = 0 to construct a local approximation,
we specify a polynomial expansion, &, with coefficients chosen to minimize f(&) globally,
over the domain of . As before, for the neoclassical growth model, f would be comprised of
the inter-temporal Euler equation and constraints, and a projection solution would specify
a polynomial expansion of the consumption policy that would minimize the Euler equation
error.

The analogous approach to our problem would be to use Equations (20a) and (20b) to

obtain approximations,

M
Vorog (K) = ajip;(K) (27a)
5=0
and
N M
Cproj(K) = ij90]<K)7 (27b>
5=0
where M is the order of approximation and ¢;, j = 1,2,..., represent a set of linearly inde-

pendent polynomial basis functions. That is, given an order of approximation M, we could
specify a grid of N > M points for K and evaluate Equations (20a) and (20b) (coupled
with the constraint (20c)) at those points to obtain a system of 2N equations in 2M un-
knowns. We could then use a nonlinear solution method to find the coefficients a and b, in
Equations (27a) and (27b), that best satisfy (20a) and (20b).

As there is no theorem to guarantee convergence of the preceding approach, we fol-
low an alternative methodology, suggested by Campanale et al. (2010), Croce (2006) and
Kaltenbrunner and Lochstoer (2010), which is to couple polynomial approximations of the
value and policy functions with value function iteration. Specifically, we seek a polynomial
approximation to the value function as in Equation (27a). Letting Ny > M, we specify a (not
necessarily equally spaced) grid for K , spanning the values (O.llA(SS, 1.9lA(55). Additionally,

we set N, = [%1 and confine € to the order N. Gauss-Hermite abscissae. To ease notation,
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we suppress time subscripts, collect the N, values of K in the vector K and group the basis

functions evaluated at each value of K in the matrix @(f{\), where @(E)Zj = goj([A(l) Using

this notation, ‘N/pmj([? ) = ®(K)a. Our algorithm proceeds in the following manner:

1: Set 7 = 0.00000001(1 — 8), A=1,l=0and a’ = 1.

2: while A > 7 do

3:

4:

o

10:

11:

for i =1 to N; do

2]

=
where

D=

Solve V* = maxg {(1 - B)aljTV + <5([A(7;, 6))
for j =1to N. do

and
> A B !
\IJ(KH Ca 5;) - (I)(Kzl,j(c))a’
end for
Ne
E(;,C) =Y w; Z] " W(IK;, Cef)'
j=1
and where w;, j = 1,2,..., N, are the Gauss-Hermite quadrature weights. Denote

the argmax by @* Clearly, \IJ(IAQ, C, g’;) is an approximation of ‘7([? "), given K, C
and ¢}, and E(IAQ, 6) is an approximation of E, [2’1_7\7(.[?’)1_7], given K; and C.

end for

Update the coefficients by solving the linear system

a*! = (2(K)"®(K)) "' o(K)"V",

where V' is the vector comprised of \//\;*, 1=1,2,..., Ng.

—

Set A = max {@(K)a”l — @(f{\)al} and [ =1+ 1.

12: end while
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13: Solve for the coefficients of the consumption policy approximant

b = (2(K)"9(K)) ' e(K)'C,

where C is the vector comprised of 6;, 1=1,2,..., Np.

The maximization step in line 2.2 of the algorithm can be performed in a variety of ways;
we use a binary search method that exploits the monotonicity of the value function with
respect to C (see Appendix C). We also speed the algorithm with a Howard improvement
step, performing the maximization in line 2.2 only when [ —100]7//100]| = 0 (that is, when [
modulo 100 is zero) and otherwise computing ‘A/Z* by substituting the contemporaneous value

of @* . The resulting polynomial approximations are

Viroj (K) = ®(K)a! (28)
and

Coros(K) = (KD, (29)

For our particular implementation of the projection algorithm, we use Chebyshev basis
functions and their collocation points; this method allows us to choose the N}, values of K so
that the interpolation errors are uniformly minimized and so that Ny = M. We find that a

value as low as M = 6 (an order 5 polynomial) provides accurate solutions to the problem.

3 Results

We now apply the solution methods outlined in the previous section to the model of Section 1
and state the main result of our paper: while the quantity dynamics of the two methods are
essentially equivalent for a variety of parameter values, the same is not true of variables that
are tightly linked to the value function, such as asset prices and welfare costs. We discuss the
reasons for this result and outline a very simple motivating example that provides intuition
for the particular problem we consider. We conclude the section by reporting diagnostics

which compare the accuracy of the solution methods.
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3.1 Calibration

We fix several parameters of our model and report them in Table 1. These values are widely
accepted in the literature; in particular, the depreciation rate and share of capital, § and «,
respectively, are identical to those of Jermann (1998). The quarterly growth rate, u, implies
annual growth of 1.6 percent and the intertemporal elasticity of substitution (IES) parameter,
1, is set in the middle of the range ((1,2]) advocated by Bansal et al. (2007). In reality, we
considered alternative values of 1 and v but do not report the corresponding solutions and
simulations as they do not alter the qualitative nature of our results. Finally, the adjustment
cost parameter, &, was chosen so that the ratio of volatilities of log consumption growth to
log output growth matches empirical estimates (in the vicinity of 0.5), which depend on the

time period and frequency of the data (see discussion below).

a 0 (ORI S
0.36 0.025 1.5 0.004 13

Table 1: Quarterly model calibration

To understand our parameterization of the TFP volatility, it is instructive to consider
the data moments reported in Table 2. The table contains means and volatilities for GDP,
aggregate consumption and the 90 T-bill, both at annual and quarterly frequencies, for
several sample periods. We highlight two important features of the data. First, the volatility
of log output growth is markedly different between pre-war and post-war samples, the former
being roughly 2.5 to 3 times as great as the latter. Second, the mean of the risk-free rate
increases and its volatility decreases as the time horizon is curtailed to include fewer years.
In the case of the mean, values in later samples are up to twice as large as that of the pre-war
sample.

As a result of the variance in sample moments across sub-periods, we observe a wide
range of calibrated values for the TFP volatility, o,, and the discount factor, [, in the
literature. Since o, determines output volatility, models that calibrate to quarterly (post-

war) data often specify much smaller values of o, than models which calibrate to annual data.
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1929-2008 (A)

1950-2008 (Q)

1960-2008 (Q)

1970-2008(Q)

Std (Ac)
Std (Ay)

Std (Ac)/Std (Ay)

Mean(r/)
Std (r/)

0.0108
0.0246
0.439
0.00847
0.0119

0.00490
0.00980
0.500
0.0146
0.00747

0.00451
0.00857
0.526
0.0173
0.00723

0.00429
0.00840
0.510
0.0168
0.00801

Table 2: Data moments for different periods and frequencies. ‘A’ denotes annual frequency and ‘Q’ denotes
quarterly frequency. Quarterly samples begin with the first quarter of the stated year and end with
the final quarter of 2008. ‘¢’ and ‘y’ denote the log of real consumption (nondurables plus services)
and GDP, respectively, and are obtained from NIPA Tables 1.1.4 - 1.1.6, with annual values scaled
to quarterly for comparison. ‘r;’ denotes the net return on the 90 T-bill, obtained from CRSP
(monthly frequency for all horizons), converted to real by subtracting the 12 month lagged moving
average of CPI return (as a forecast of expected inflation). The risk-free is annualized by a simple

scale factor.

Hence, we allow o, € {0.01,0.02,0.03,0.04}. Since Std (Ay) ~ (1 — a)o, (the volatility of
log capital growth is very small) in our model, our choices of o, correspond to Std (Ay) €
{0.0064,0.0128,0.0192,0.0256}, a range that encompasses the moments reported in Table 2.

For the remaining parameters, the discount rate, 3, and coefficient of relative risk aver-
sion, 7, we entertain § € [0.980,0.998] and v € {2,5,10}. We choose these values because
they not only encompass accepted values in the literature, but they allow a broad enough
range of parameterizations to investigate their effect on the sensitivity of the value function

to 0,. In general, we are primarily concerned with § > 0.99, as these higher values are

requisite for matching moments of the risk-free asset.

3.2 Model Implications

3.2.1 Low Volatility

Table 3 reports simulation results for both projection and perturbation methods when o,

{0.01,0.02} and when v = 5. We set f = 0.998, which simultaneously yields a risk-free
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rate in the neighborhood of those observed in post-war data and that allows us to closely
approximate the historical pre-war risk-free rate of 0.00847 (see Table 4) when o, > 0.02.
We use fifth order Cheybshev polynomials for projection and third order Taylor expansions
in the case of perturbation — for the former method, higher order approximations make
little material difference to the stated results, and for the latter, numerical instabilities lead
to potentially greater discrepancies than those reported. Finally, moments are computed
by simulating 100,000 quarterly observations and then aggregating financial variables to an

annual frequency by a simple scale factor.

o, =0.01 o, =0.02

Proj Pert NPert Proj Pert NPert,
Std(Ac) 0.00353  0.00352  0.00352 | 0.00704  0.00702 0.00702
Std(Ay) 0.00643  0.00643  0.00643 0.0129 0.0129  0.0129
Std(Ac)/Std(Ay) 0.549 0.549 0.549 0.548 0.546 0.546
Std(Ad)/Std(Ay) 1.85 1.85 1.85 1.84 1.84 1.84
E [Ry] 0.0182 0.0181 0.0190 0.0163 0.0161 NaN
Std (Ry) 0.00116  0.00115  0.00114 | 0.00232  0.00229 NaN
E[RF — Ry] 0.0000821 0.000213 -0.000658 | 0.000653 0.000845  NaN
Std (R¥ — Ry) 0.00221 0.00221  0.00221 | 0.00440  0.00440 NaN
SR (RE) 0.0371 0.0964 -0.297 0.148 0.192 NaN
E (logV/C) 3.01 3.00 2.94 2.31 2.12 NaN

Table 3: Simulation moments for both projection (5th order) and perturbation (3rd order) methods, for
o, = {0.01,0.02}, v = 5 and 8 = 0.998. Simulations are quarterly and financial moments are

annualized.

We begin by considering the projection results in Table 3. As previously mentioned, the
model was calibrated to closely approximate the volatilities of log consumption and output
growth in annual pre-war data; o, = 0.01 was chosen to yield an output volatility slightly
lower than observed in quarterly data and ¢ allows us to fix the ratio Std(Ac)/Std(Ay).

Hence, it is not surprising that the standard deviations of consumption and output are not
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drastically different than their counterparts in the data. The remaining moments are freely
determined, and in some cases are quite different from observed values. In particular, the
equity premium and its volatility are extremely low and the volatility of the risk-free is about
six to seven times smaller than what would be expected in the data. In fact, Kaltenbrunner
and Lochstoer (2010) find that while holding the Sharpe ratio of equity fixed, there is a
trade-off in matching the mean and variance of the equity asset and the volatility of the risk-
free. We emphasize that a simple modification to the model a la Croce (2006) (explicitly
parameterizing a time varying growth rate in the TFP process) can rectify some of these
issues. However, in order to highlight our computational results, we favor parsimony and
forsake the additional state variable.

The remaining columns of Table 3 report simulation results for perturbation, for both
the case where R/ and log(V;/C,) are computed with a direct local approximation (the
column denoted ‘Pert’) and where they are computed nonlinearly with the local solutions
of the value function and consumption policy (the column denoted ‘NPert’). Regardless
of the solution method and the value of o,, we see that a third order perturbation yields
quantity dynamics that are almost identical to those of projection. The same is not true of
asset pricing moments and log(V;/C;). When o, = 0.01, both variants of the perturbation
method generate simulated moments that are in close agreement with projection, the one
exception being the equity premium, which is extremely close to zero in all cases. However,
increasing the TFP volatility to o, = 0.02 renders the nonlinear perturbation unable to
compute asset prices and log(V;/C}). The reason is that in the presence of higher volatility,
instability of the value function solution results in negative values under a radical or log
function, precluding our ability to compute the corresponding moments. These values are
reported as ‘NaN’. Alternatively, with the direct perturbation, obtained by augmenting the
perturbation conditions with Equations (26a) and (26b), we are able to drastically improve
the simulated moments of the local method; in this case, column ‘Pert” shows that the local
method only exhibits slight deviations from the global method for asset prices, again with
the exception of the equity premium which is very close to zero in both cases. The deviation
for log(V;/C}) is slightly larger, but not horrendous. As we mention in Section 2, there is no

theoretical reason to resort to direct approximations for ancillary model variables; in fact,
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if the solutions for V; and C} were good enough, any nonlinear function of them would also
yield a highly accurate approximation. However, as we will see below, perturbation delivers
a poor solution of V; when o, is high. The result is that a direct local approximation of R,{c
and log(V;/C}) reduces the dependency of these variables on the value function and improves

their accuracy.

3.2.2 High Volatility

Asset pricing papers that match moments of annual, pre-war data sets are too numerous to
cite. Table 4 reports simulation results for both projection and perturbation methods when
o, = {0.03,0.04}, the latter being a value that conforms to pre-war, annual parameteriza-

tions. As before, v =5 and [ = 0.998.

o, =0.03 o, =0.04

Proj Pert Npert Proj Pert NPert
Std(Ac) 0.0105  0.0105 0.0105 | 0.0140 0.0138 0.0138
Std(Ay) 0.0193  0.0193 0.0193 | 0.0257  0.0257 0.0257
Std(Ac)/Std(Ay) | 0.547 0.543  0.543 | 0.543 0.537  0.537
Std(Ad)/Std(Ay) 1.82 1.83 1.83 1.80 1.81 1.81
E [Ry] 0.0130  0.0127  NaN | 0.00847 0.00779 NaN
Std (Ry) 0.00345 0.00343 NaN | 0.00455 0.00468 NaN
E[RYF — Ry] 0.00166 0.00195 NaN | 0.00299 0.00370 NaN
Std (R¥ — Ry) 0.00651 0.00654 NaN | 0.00855 0.00860 NaN
SR (RE) 0.254  0.299 NaN | 0.350  0.430  NaN
E (logV/C) 1.44 0.663 NaN 0.561 -1.38 NaN

Table 4: Simulation moments for both projection (5th order) and perturbation (3rd order) methods, for

o, = {0.03,0.04}, v = 5 and 8 = 0.998. Simulations are quarterly and financial moments are

annualized.

The previous discrepancies now become exaggerated: while the global method and both

variations of the local method show high agreement for quantity dynamics, solutions for asset
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moments and log(V;/C;) diverge as o, increases. As before, nonlinear perturbation is unable
to compute asset prices and log(V;/C;) for high o,, but the direct local approximations
ameliorate the problem. However, in the most extreme case of o, = 0.04, even the direct
perturbation and projection show moderate discrepancies for asset prices, and for both values
of o, the means of log(V;/C;) are quite different.

The inability of the local method to approximate log(V;/C}) is crucial for welfare analysis.
For example, to compute the welfare costs of TFP volatility, one would simply evaluate the
difference log(V!/C!) — log(V,*/CI), where V]! and C! are computed under low volatility
and V/* and C!" are computed under high volatility. The resulting value is interpreted as
the percentage change in the agent’s utility (as a fraction of consumption) as volatility
changes. These differences are easily computed from the values reported in Tables 3 and 4:
according to Chebyshev projection, a one percent increase in TFP volatility from o, = 0.03
to o, = 0.04 results in a welfare loss of 1.44 - 0.561 = 0.879, while the analogous computation
due to perturbation is 0.663 + 1.38 = 2.04 — more than twice the value of the global method.

We will see that the findings in this section are a result of the fact that perturbation is a
local approximation around the deterministic steady state (0, = 0), and that the value func-
tion exhibits a high degree of curvature in the direction of o,. For this reason, perturbation
has difficulty achieving an accurate approximation as the calibrated value of o, moves away
from zero. We examine this result in more detail below, but first consider a very simple

example that provides intuition for the source of the discrepancy.

3.3 DMotivating Example

We now consider the very simple example of approximating the square root function, f(x) =

vz, with a Taylor polynomial of various orders’. Judd (1998) provides similar numerical

1/4

results for z'/*. Generally speaking, any (analytic) continuously differentiable function can

be written as,

£ (1 |
f@) =3 ey, (30

'We thank George Tauchen for suggesting this basic example to illustrate the intuition of our main result.
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for  in a neighborhood of z,, where f denotes the ith derivative of f and where f(© = f.

For the square root function, it is not difficult to show that,

F0() = (- B (31)

where n!! denotes the double factorial of n 2. Thus, the square root function can be written

as
Va =+ i(—l)m%xé_i(ﬂf — o)’
i=1 '
— it e - o) (32
i=1
where a; = £ <i)i(!x"). For a general power series of the form in Equation (32), the radius of

convergence is defined as the value r € R such that (32) converges for |z — xo| < r; that is,
the radius of convergence identifies the neighborhood for which the function converges. A

simple way to determine the radius of convergence is

Q;
r = lim (33)
Hence, for the square root function (assuming xy > 0),
. 1_ -
)i+t Zidn 2
qu(l'g) = Zliglo ( ) (21‘_212)!1! Ol—ifl
(=) s o
(2i—3)11 3—i
= lim 2t 0
isoo  (2i—1)1 _z—i—1
2T (i41)1*0
200+ 1)
= lim —x
oo 2 —1 "
= 29. 34
(

From Equation (34) we understand that the Taylor series expansion of the square root
function around the point xg is only guaranteed to converge for = € (0,2z,). Outside of this

range, the series expansion will diverge.

2For n odd, n!! is the product of all odd numbers less than or equal to n. Similarly for n even. The

double factorial of 0 and -1 are defined to be 1.
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Intuitively, the radius of convergence for a Taylor series depends on the rate at which the
derivatives of the target function diminish at the point of approximation. For a function with
little shape, the high order derivatives drop quickly to zero, forcing r to be quite high — the
extreme case being a polynomial of finite order, with an infinite radius of convergence (the
Taylor series converges for all z € R). Conversely, in cases where the high order derivatives
do not exhibit quick decay, the radius of convergence is low, resulting in a Taylor series
expansion which is only applicable over a small portion of the domain?.

To illustrate this concept, we approximate the square root function at two values: zg =1
and ro = 2. In the first case the radius of convergence is 1 and we anticipate that a
Taylor series approximation will only be appropriate in the range (0,2). Figure 1 depicts
the first nine Taylor polynomial approximations of f(x) = y/z around zy = 1. Clearly, the
polynomial approximations are adequate for x € (0,2), but diverge outside of that range;
while increasing the order of approximation to arbitrary levels allows us to fit the function
at any desired level of precision over the interval (0,2), the approximations become erratic
outside of that interval for high orders. In the second case, the radius of convergence is 2,
indicating that the Taylor series will converge on the interval (0,4). Figure 2 depicts the first
nine Taylor polynomial approximations around xy = 2, confirming our prior intuition.

This example illustrates that there is an inverse relationship between the degree of cur-
vature of a function at a point of interest and the size of the interval (around that point)
over which a Taylor polynomial approximation is adequate. It is precisely this concept which

drives the main result of our paper, as we will see below.

3.4 Graphical Evidence

We re-consider the model solutions of Section 3.2. Figure 3 shows policy function approx-
imations for 5th order Chebyshev projection and perturbation of orders 1,2 and 3, all for
the case of o, = 0.04 and § = 0.998 (for C; and V;, the ‘Pert’ and ‘NPert’ solutions are
identical). Figure 4 depicts similar approximations for the value function.

These plots clarify the results reported in Table 4: both projection and perturbation

3den Haan and de Wind (2009) provides a more general and thorough discussion of the relationship

between polynomial approximations and the radius of convergence.
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Figure 1: First nine Taylor polynomial approximations of \/x around z¢ = 1.

produce policy functions that are in close agreement, while there is a wide discrepancy in
their solutions for the value function, even among among the different order perturbations.
Since the quantity dynamics of the solutions are not sensitive to the value function, it is not
surprising that the simulated macroeconomic moments of the two methods do not differ by
a great amount. However, the risk-free rate and log(V;/C}) both depend directly on the level
and shape of the value function, and hence are quite different across methods. Figures 5
and 6 depict the same approximations for the case of o, = 0.01, and demonstrate that when
the TFP volatility is low, the solution methods are far more similar, as expected from the
simulation output in Table 3. In this case, the consumption policy approximations overlap

to an even greater extent and the value function approximations are separated by only a
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Figure 2: First nine Taylor polynomial approximations of \/x around z¢ = 2.

(relatively) small level shift. This latter shift diminishes as we shrink o, toward zero.

We note that in our model it is possible to analytically solve for the return on equity
in terms of aggregate variables (see Appendix B), and hence it is unaffected by poor local
approximations of the value function. It follows that local approximations of the equity
premium are only affected by the value function via the risk-free rate. This result may not
extrapolate to more general models where analytical expressions of the return on equity are
not available.

To understand why the value functions for the two solution methods diverge for large o,
it is useful to think of the value function and consumption policy as functions of both the state

variable, K , and the TFP volatility parameter, o,. Figures 7 and 8 show policy and value

24



Consumption Policy

3.5

3.0
|

2.0

15

1.0

0.5

20 40 60 80

Figure 3: Consumption policy approximations for Chebyshev projection (5th order) and perturbation of

orders 1,2 and 3, where o, = 0.04 and 8 = 0.998.

function approximations for 5th order Chebyshev projection and 3rd order perturbation,
when o, € [0,0.04]. Thus, the approximations in Figures 3 — 6 are simply cross sections
(fixing o) of the functions depicted in Figures 7 and 8. It becomes apparent from inspecting
these surfaces that the value function exhibits a high degree of curvature in the direction of
0., with the amount of curvature increasing as o, approaches zero, whereas the consumption
policy is quite flat. As a result, similar to the square root function we previously considered,
we anticipate that the radius of convergence of a Taylor polynomial approximation of the
value function will diminish for approximations centered at points very close to o, = 0.
This is a exactly what a perturbation solution is: a local Taylor approximation at o, =

0. It follows that, for the particular case of the value function, we have no guarantee of
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Figure 4: Value function approximations for Chebyshev projection (5th order) and perturbation of orders

1, 2 and 3, where o, = 0.04 and 5 = 0.998. Note the widely different scales on the vertical axes.

convergence for values of o, far away from zero, and in fact we should not be surprised to
see divergent behavior, as suggested by the previous plots. This result is congruent with den
Haan and de Wind (2009) who find that nonlinearities in DSGE models can render high order
perturbation solutions that are explosive. On the other hand, the radius of convergence for
the consumption policy is likely to be quite large, and we expect local Taylor approximations
to converge for a wide range of o, — this is corroborated by Figure 7, where we are unable
to distinguish the two surfaces.

The upshot of the foregoing results is that a global projection method is more robust to
value function curvature, since it seeks to minimize an error equation expressed in terms of
the true (unknown) value function, rather than approximating the truth at a distant focal

point.

3.5 Solution Evaluation and Sensitivity Analysis

In the preceding analysis we have merely shown some conditions under which the two solution
methods we consider are different; we have not formally investigated their relative accuracy.
We now undertake the important task of determining which of the solutions is a closer
approximation to the unknown truth and do so for a variety of model parameter values.

While our primary evaluation criterion will be Euler equation errors, we will conclude the
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Figure 5: Consumption policy approximations for Chebyshev projection and perturbation of orders 1,2 and

3, where o, = 0.01 and 3 = 0.998.

section with a discussion of the den Haan-Marcet statistic (den Haan and Marcet (1994)).

3.5.1 Pricing Errors

The fundamental asset pricing equation is 1 = E;[M; 1 R;.1], where M,y is the time ¢
stochastic discount factor, and R;; is the return for any asset between ¢ and t 4+ 1. Thus,

from Equation (20b) we have

1=E t [Mt+1R§+1]

—~ o~ o~ -/[\t-‘—l
—E, | Mo ot (a )At+1 + Cita n Kii1) _ (35)
K, K & ({41)
K1
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Figure 6: Value function approximations for Chebyshev projection and perturbation of orders 2 and 3,

where o, = 0.01 and S = 0.998.

Since the stochastic discount factor M, incorporates current consumption, CY, in its denom-
inator (see Equation (17)), we can interpret pricing errors as a fraction of contemporaneous
consumption. As suggested by Judd and Guu (1997), Aruoba et al. (2006) and Caldara
et al. (2009), base 10 logarithms of pricing errors in Equation (35) can be interpreted in
the following manner: a value of -1 corresponds to a 10% consumption error, a value of -2
corresponds to a 1% consumption error, a value of -3 corresponds to a 0.1% consumption
error, etc.. Combining Equation (35) with the long simulations of ¢; (see Equation (21))
used in Section 3.2, we can compute the mean of the pricing errors implied by the model,
for each solution method. The expectation is approximated by a Gauss-Hermite quadrature

rule, with the order chosen so as to exactly compute the integral for the finite polynomial so-
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4.0

Figure 7: Consumption policy approximations for 5th order Chebyshev projection and 3rd order pertur-

bation, for o, € [0,0.04].

lutions. The pricing errors are reported graphically in the upper rows of Figures 9 - 12. The
individual plots depict how mean Euler equation errors vary with /3, where g € [0.980, 0.998]
— in general, perturbation solution quality degrades as [ rises. Moving across the upper
rows, from left to right, we are then able to observe the effect of increasing risk aversion,
v, and moving between the four figures we observe the effect of increasing TFP volatility,
o, — as with 3, the quality of the perturbation solution degrades as each of these parame-
ters increases. At the lower extreme, in Figure 9, when o, = 0.01 and v = 2, a 3rd order
perturbation dominates a 5th order projection for virtually all values of 5 that we consider.
However, both solutions produce errors that most would consider economically insignificant
(less than 0.01% of consumption). Holding o, fixed and increasing -, the perturbation errors
rise to levels as high as 1% of consumption, for high values of 3. These qualitative results
become more pronounced in Figures 10 - 12, where at the upper extreme (o, = 0.04 and

v = 10), perturbation errors exceed 10% of consumption, for high values of §. It is this

29



Value Function

50

“.‘\‘\‘\"'
KK
NN
RN
U

-100

N
N
N

QO
IV
AR

“&&&

-150

—-200

-250

Figure 8: Value function approximations for 5th order Chebyshev projection and 3rd order perturbation,

for o, €[0,0.04]. The lower surface corresponds to perturbation.

final case that deserves particular attention: models that calibrate to annual, pre-war data
generally require high values of o, (on the order of 0.04) and § (on the order of 0.998 or
above) in order to match output volatility and the level of the risk-free rate. We see that
these calibrations, matched with moderate levels of risk aversion (above 5) can lead to poor
local approximations. On the other hand, models that calibrate to quarterly, post-war data
typically obtain much smaller values of o, (on the order of 0.01 or below), and do not suffer
from poor local approximations.

The fundamental characteristic driving these results is the curvature of the value function
with respect to TFP volatility: as shown in Figure 8, the value function can exhibit a high
degree of curvature in the direction of o,. In cases where the curvature is extreme, a local
method such as perturbation will have difficulty approximating the function at points far
from the deterministic steady-state (the locus of approximation), a result which is corrobo-

rated by Figures 9 - 12. This is especially relevant for models that require a high calibrated
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Figure 9: Mean log;, Euler equation errors (first row), mean risk-free rate (second row) and mean log
ratio of value function to consumption policy, plotted as functions of § for different values of ~.

o, = 0.01 in all cases.

value of o,. The parameters v and [ have an effect insofar as they increase the sensitiv-
ity of the value function to changes in o,; i.e. the sensitivity increases with each of these
parameters.

The second and third rows of Figures 9 - 12 depict the mean of R/ and the mean of
log(V;/C}), respectively, across simulations. As in Section 3.2, we compute these values
both nonlinearly, via Equations (17), (25a) and (25b), and directly, via Equations (26a) and
(26b). As with the Euler equation errors, the nonlinear perturbation risk-free rate deviates
dramatically from that of projection as 3, v and o, rise. This discrepancy is most pronounced

for o, = 0.04, v > 5 and 8 > 0.99. On the other hand, the direct perturbation computation
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Figure 10: Mean log,, Euler equation errors (first row), mean risk-free rate (second row) and mean log
ratio of value function to consumption policy, plotted as functions of 5 for different values of ~.

o, = 0.02 in all cases.

appears to be quite similar to projection for all parameter values. In truth, the local method
exhibits a small amount of divergent behavior as well, but the graphical evidence is washed
out by the scale of the nonlinear deviation. The moments in Tables 3 and 4 give an idea of
the magnitude of divergence.

The reason for the discrepancy in the risk-free rate computations is the same as for the
Euler equation errors: for high values of 3, v and o, perturbation provides a poor approxi-
mation to the value function. Since the risk-free rate depends directly on the value function
in models with recursive utility (see Equations (25a) and (17)), it is likewise poorly approx-

imated by perturbation, insofar as the value function approximation is poor. This effect is
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Figure 11: Mean log,, Euler equation errors (first row), mean risk-free rate (second row) and mean log
ratio of value function to consumption policy, plotted as functions of 5 for different values of ~.

o, = 0.03 in all cases.

most severe when we compute the risk-free fate nonlinearly. Viewed from the opposite per-
spective, if our approximations for C; and V; were highly accurate, a nonlinear computation
of R{ would likewise be highly accurate. Thus, the large deviations in Figures 10 - 12 are just
further evidence of the poor local approximation of V; for high 3, v and ¢,. The interesting
aspect of our results, though, is that we can ameliorate the effect of the value function by
directly computing the risk-free rate via a Taylor expansion. This latter method anchors
the risk-free at its deterministic steady state and weakens the computational relationship
between Rf and V;.

The final rows of Figures 9 - 12 lend more insight to the foregoing results. As mentioned
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Figure 12: Mean log,, Euler equation errors (first row), mean risk-free rate (second row) and mean log
ratio of value function to consumption policy, plotted as functions of 5 for different values of ~.

o, = 0.04 in all cases.

in Section 3.2, we include the log of V;/C} in our analysis, since this variable is instrumental
in welfare evaluations. Once again, the approximations deteriorate as (3, v and o, increase,
which we attribute to the poor local approximation of the value function. However, in the
case of log(V;/C;) the deviations are more severe (for the direct Taylor expansion method)
than for the risk-free. The reason for this is that the risk-free rate depends on the value
function in both numerator and denominator (see Equations (17) and (25a)), which mitigates
the error propagation of the value function approximation. The same could be true of

welfare computations log(Vy*/C}) — log(V;™/Cy*) when V;* and V;** are computed with the

same o, (i.e., welfare effects are evaluated for a variable other than o,). However, since the
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approximations of V; are likely to be very different for different values o, (it will be well
approximated for low volatility and badly approximated for high volatility), we expect that
welfare computations attributed to TFP volatility will be very poorly approximated.

As a final note, we repeated all of the previous analysis for = 0 and ¥ = 0.5; these
changes only caused slight shifts, leaving the results above qualitatively the same. For space
considerations, we do not include them. We recognize, however, the particular interplay
between § and u: lowering the growth rate increases the model’s ability to tolerate high
values of B before local approximations become very poor. That is, we can think of the
model as depending on the single growth adjusted subjective discount factor f* = fexp(u)

— lowering u or [ effectively decreases £*, and hence the model’s sensitivity to o,.

3.5.2 den Haan-Marcet Statistic

Since agents in our model have rational expectations, the residual of the pricing equation,
Uppr =1 — My Ry (36)

should not be in the time ¢ information set. That is, under the null hypothesis that we have

correct solutions for the value and policy functions, 3 = 0 in regressions of the form

n
U1 = Z Biwit + Cer1, (37)
i=1
for t = 1,2,...,T, where x;; represent variables in the time ¢ information set. den Haan

and Marcet (1994) suggest testing this hypothesis by constructing a Wald-type statistic

T -1
DM(n) =u'X [Z wtazgét%rl] X'u (38)

t=1
where x; is the vector of time ¢ regressors, 14, Ta¢, ..., Tny, X is the matrix with rows aj,

and (41 = uyyy — @6, If the null hypothesis is true, DM (n) < y2(n): however, since the
probability of attaining the true solution is zero, we expect that large values of T" will force a
rejection of the test. To account for this, den Haan and Marcet (1994) compute DM (n) for
multiple simulations of w and determine the proportion of times that the statistic falls within

certain critical limits of the x*(n) distribution. If the approximate solutions are good, the
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proportions within these bounds should be close to the actual area under the x*(n) density
function.

In our implementation of the Den Haan-Marcet statistic, we regress the price residuals on
a constant and five lags of both log consumption growth and log productivity growth (hence,
n = 11). We fix § = 0.998 and simulate 500 data sets of 7" = 3000 quarterly observations
(750 years of data) and report the proportion of time that the value from Equation (38) is
above or below the 5% points of the x?(11) density in Table 5. This Wald-type diagnostic

o, =0.01 o, =0.04
y=2 vy=5 v =10 =2 7=5 v =10
Projection | (0.052, 0.054) (0.052, 0.052) (0.050, 0.052) | (0.052, 0.056) (0.054, 0.062) (0.050, 0.07)
Perturbation | (0.058, 0.052) (0.050, 0.058) (0.006, 0.338) (0,0) (0,0) (0,0)

Table 5: Den Haan-Marcet statistics, computed for 500 simulations of 7" = 3000 quarterly observations.
The numbers in the parentheses represent the proportion of times the statistic was below and

above, respectively, the 5% and 95% percent points of the x2?(11) density. In all cases, 8 = 0.998.

corroborates the main result of the paper: in all cases the global Chebyshev projection
method provides a very accurate solution to the model, whereas a high order perturbation is
only adequate for small values of the TFP volatility or where other model parameters (such

as 7y) eliminate the sensitivity of the value function to o,.

4 Conclusion

We have shown that choice of solution method can be critical for production-based asset
pricing models with recursive utility. In particular, local perturbation methods have the
potential to be inadequate when TFP volatility is calibrated at high levels and when the risk
aversion and the discount factor parameters are sufficiently high to make the value function
very sensitive to TFP volatility. A global projection method, on the other hand, does quite
well under a variety of circumstances. The reason for this result is that the value function
in our model has the potential to be highly curved in the direction of TFP volatility, o.. In

fact, the degree of curvature can be high enough that a local Taylor approximation of the
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value function is only suitable over a very small region around the point of approximation.
Since perturbation is equivalent to a local Taylor expansion around the deterministic steady
state (o, = 0), we find that in certain cases the resulting solution diverges for large o, even
for high order approximations. A global approximation method, however, such as Chebyshev
projection, is not susceptible to these issues, since it seeks to minimize an error function at
a desired level of the TFP volatility.

We show that parameter choice and model calibration is pivotal to the results above. For
models that calibrate to quarterly, post-war data, typical values of o, and g are low enough
to eliminate value function sensitivity to TFP volatility, rendering perturbation solutions
perfectly acceptable. Caldara et al. (2009) compares perturbation and projection methods
for such parameterizations and demonstrates that both are adequate. Our results diverge
from those of Caldara et al. (2009) when we consider parameter values that are relevant
for models which calibrate to annual, pre-war data. For these latter parameterizations, the
quality of high order perturbation methods degrade.

Local approximations of asset prices can be improved by augmenting the system of per-
turbation conditions and directly computing expansions for the risk-free rate. This method
of approximation weakens the dependency of bond prices on the poorly approximated value
function, and results in a more accurate solution. The same is less true of welfare costs:
while very small improvements are also observed from direct computations, they are not
nearly as striking.

As with many macroeconomic models, we find that the stochastic steady-state distri-
bution of capital is far away from the corresponding deterministic stead-state value, l?ss.
One consideration is to incorporate this information in the perturbation approximation by
expanding the Taylor polynomial around the mean of the steady-state distribution, rather
than [A(SS. However, we emphasize that while the value function is highly curved in the
direction of o, it us relatively linear in the direction of the I?SS, and hence a first order
shift in the capital direction is likely to have little effect on a problem that is caused in
the volatility direction. Similar expansions around different values of o, are not possible, as
analytic expressions for the derivatives of the perturbation system can only be found at the

deterministic steady-state (o, = 0).
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In contrast to the value function, the consumption policy is relatively linear in the direc-
tion of ¢, and more curved in the direction of capital. As a result, a local Taylor approx-
imation converges over a large range of values of 0., and perturbation has little difficulty
in providing good approximations of the endogenous choice variable. For this reason, our
results would have little bearing on the practitioner who is only interested in macroeconomic
quantities: since quantity dynamics are not sensitive to the value function, perturbation
delivers adequate solutions, even for fairly large values of o,. Aruoba et al. (2006) only
considers quantity dynamics and finds that perturbation is competitive with global solution
methods.

Our results are important for individuals who are jointly interested in quantity dynamics
and other variables such as asset prices and welfare costs . Since asset prices in a recursive
utility model depend crucially on the value function, our choice of solution method has
an important impact on their moments (risk-free rates, risk premia, their volatilities, etc.)
insofar as the method improves the value function approximation. The same is true of other
variables that are tightly linked to the value function, such as welfare costs. While we don’t
emphasize our particular model as a solution to the joint problem of matching macroeconomic
and asset pricing data, we feel that extensions of the model have great potential, and that
the problems we have uncovered are likely to be present in other production-based models
with recursive utility.

Our general caution is for practitioners to be aware of the potential disadvantages of a
local approximation method and, when feasible, to compare it to a global method to ensure
adequacy. While we find that Chebyshev projection is competitive with perturbation in terms
of computing time for the case of a single state variable, such is not likely to be true of models
with many more state variables; as the number of variables increases, a global method will
suffer from the curse of dimensionality. In cases such as these (see, for example, Rudebusch
and Swanson (2008)) perturbation has the benefit of computational simplicity and, hence,
is a natural candidate for an estimation procedure. However, for models where perturbation
cannot adequately approximate the value function, and where financial moments or welfare
costs are of interest, no degree of computational simplicity can compensate for an incorrect

solution. For this reason, we suggest using perturbation in cases where solution adequacy
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can be verified against a more robust benchmark.
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A Adjustment Cost Parameters

We define the parameters oy and ay of the adjustment cost function. We want to specify
a function that does not impose adjustment costs in the deterministic steady state; i.e. a

function that satisfies

P(Tss) = T (39)
and

¢'(w55) = 1, (40)
where x,, = R —Cas First, in the deterministic steady state, Equation (20c) becomes

ss

. 1 . Ko — .\ ~
Kss - = (1 - 5)Kss + gb(ss/\—%) Kss
Zss Kss

= Tgg = Qb_l(Z\ss -1+ 6) (41)

Since ¢'(z) = apx~1/¢, Equation (40) is satisfied if a; = z+/*. Substituting this value for a;,
Equation (39) is then satisfied if

e B B
1 1/e"s
1
1 _ 1/§x53
—1/¢
1 _ 1/€$38
1

= —Tgs-

1-¢
Combining Equations (39) and (41), it’s clear that

Qo = Tgs

= Tss

~

Tos = Lgs — 1 +0

=exp(p) — 1+,
from which we conclude
a1 = (exp(u) — 1+ 8)" (42)
and
1
a2 = 1 (expl) ~ 1+9). (13)



B Derivation of Return on Equity

The Lagrangian for the firm’s problem is:

max }Eo [Z Mt+1{(Zth)1_aKf‘ —W,H; — I,

{It,Kt+1,Ht Py
I
t

The first order condition with respect to I; is

I
-1 "= =0
+/'Lt¢ (Kt) )

which implies,
B 1
:ut - ¢/ <L> .
Ky

The first order condition with respect to K; 1 is

(45)

—p+E, [Mtﬂ O‘(Zt+1Ht+l)1_aK?+_1l]

o L ) I ( Iy ))}
+E, | M, 1—-96)— + =0. (46
t { t+1 M1 (( ) ¢ (Kt+1 Kot ¢ Kpor ( )

Using Equation (45) we substitute for ¢'(I;41/K;+1) in Equation (46) and rearrange to get

a(Z He )oK — 1 I
e =,y | My (Zi11Higa) 1 T A s (6 1) g ‘ (47)
K Ki

Substituting for y; and ju, 1, and recognizing Y; = (Z;H;)'"*K{* and I; = Y; — C}, we obtain

Teq1
I Vi 4 Gy () +1-0

| —E, | Moo I (« Vi + Ci n Kit1 (48)

K Ki1 @ <1t+1 )

Kiqq
=B, [MyaR,] (49)
where
Tiy1
I )Y +C ¢<—t )“‘5
= () [ (50)
t

K Tt
t+1 ¢/ (Kt+1>

Equation (49) is the standard Euler condition for the return on investment, Rf,,. More-

over, since the production technology and adjustment costs satisfy constant returns to scale,

Restoy and Rockinger (1994) prove RE, = R[.,, where RE, | is the unlevered return on

equity.
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C Maximization Algorithm

We present the binary search algorithm that we use to select the optimal consumption value
in line (2.2) of the projection algorithm. This method exploits the monotonicity of the value
function with respect to @ and converges very quickly. It is performed for each value in the
capital grid, K , at each step in the value function iteration where maximization is performed
(non-Howard steps).

1: Set 7 = 0.000001, & = I A® =1, 1° = 0, ¢"" = 0 and ¢"** = K{",

2: while A¢ > 7¢ do

cmaTfcmin

30 ="F—and & =c"+¢°

4: form=1to2do

5: C=cm

6: steps 2.2 — 2.2 of the projection algorithmg
7: vl = {(1 —B)CT + 8 (E:cp(f@@))é}lV
8: end for

9: if v! > v? then

10: cmar = ¢l
11:  else

12: cmin = 2
13: end if

14: AC = ¢maz _ Cmin
15: end while

16: CZ* = ch
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