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Abstract

We develop a test for weak instruments in linear instrumental variables regression
that is robust to heteroskedasticity, autocorrelation, and clustering. Our test statistic
is a scaled non-robust first stage F statistic. Instruments are considered weak when
the Two-Stage Least Squares (T'SLS) or the Limited Information Maximum Likelihood
(LIML) Nagar bias is large relative to a benchmark. We apply our procedures to the es-
timation of the Elasticity of Intertemporal Substitution, where our test indicates weak
instruments in a larger number of countries than the test proposed in Stock and Yogo
(2005).
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1. INTRODUCTION

This paper proposes a simple test for weak instruments that is robust to heteroskedastic-
ity, serial correlation, and clustering. Staiger and Stock (1997) and Stock and Yogo (2005)
developed widely used tests for weak instruments under the assumption of conditionally
homoskedastic serially uncorrelated model errors. However, applications with heteroskedas-
ticity, time series autocorrelation, and clustered panel data are common. Our proposed
test provides empirical researchers with a new tool to assess instrument strength for those

applications.

We show that departures from the conditionally homoskedastic serially uncorrelated frame-
work affect the weak instrument asymptotic distribution of both the Two-Stage Least Squares
(TSLS) and the Limited Information Maximum Likelihood (LIML) estimators. Conse-
quently, heteroskedasticity, autocorrelation, and/or clustering can further bias estimators
and distort test sizes when instruments are potentially weak. At the same time, the first

stage may falsely indicate that instruments are strong.

Under strong instruments, both TSLS and LIML are asymptotically unbiased, while such
is generally not the case when instruments are weak. We follow the standard Nagar (1959)
methodology to derive a tractable proxy for the asymptotic estimator bias that is defined for
both TSLS and LIML. Our procedure tests the null hypothesis that the Nagar bias is large
relative to a “worst-case” benchmark. Our benchmark coincides with the Ordinary Least
Squares (OLS) bias benchmark when the model errors are conditionally homoskedastic and

serially uncorrelated, but differs otherwise.

Our proposed test statistic, which we call the effective F statistic, is a scaled version of the
non-robust first stage F statistic. The null hypothesis for weak instruments is rejected for
large values of the effective F. The critical values depend on an estimate of the covariance

matrix of the OLS reduced form regression coefficients, and on the covariance matrix of the



reduced form errors, which can be estimated using standard procedures.

We consider two different testing procedures, generalized and simplified; both are asymp-
totically valid. Critical values for both procedures can be calculated either by Monte-Carlo
methods, or by a curve-fitting methodology by Patnaik (1949). The generalized testing pro-
cedure applies to both TSLS and LIML, and has increased power, but is computationally
more demanding. In contrast, the simplified procedure applies only to TSLS. The simplified
procedure is conservative, because it protects against the worst type of heteroskedasticity,

serial correlation, and/or clustering in the second stage.

Empirical researchers frequently report the robust F statistic as a simple way of adjusting the
Staiger and Stock (1997) and Stock and Yogo (2005) pre-tests for heteroskedasticity, serial
correlation, and clustering, and compare them to the homoskedastic critical values. To the
best of our knowledge, there is no theoretical or analytical support for this practice, as
cautioned in Baum et al. (2007). Our proposed procedures adjust the critical values. While
our proposed test statistic corresponds to the robust F statistic in the just identified case, it

differs in the over-identified case.

Our baseline implementation tests the null hypothesis that the Nagar bias exceeds 10% of
a“worst-case” bias with a size of 5%. The simplified procedure for TSLS has critical values
between 11 and 23.1 that depend only on the covariance matrix of the first stage reduced
form coefficients. Thus a simple, asymptotically valid rule of thumb is available for TSLS

that rejects when the effective F is greater than 23.1.

We apply weak instrument pre-tests to a well-known empirical example, the instrumental
variables (IV) estimation of the Elasticity of Intertemporal Substitution (EIS) (Yogo, 2004;
Campbell, 2003). Our empirical results are consistent with Yogo (2004)’s finding that the
EIS is small and close to zero. However, for several countries in our sample, conditionally
homoskedastic serially uncorrelated pre-tests indicate strong instruments, while our proposed

test cannot reject the null hypothesis of weak instruments.



There is a large literature on inference when IVs are weak; see Stock et al. (2002) and
Andrews and Stock (2006) for overviews. Our paper is closest to Staiger and Stock (1997)
and Stock and Yogo (2005). Zhan (2010) provides another interesting approach, which,
unlike ours, proposes to test the null hypothesis of strong instruments. Bun and de Haan
(2010) point out the invalidity of pre-tests based on the first stage F statistic in two particular
examples of non-homoskedastic and serially correlated errors, but do not provide a valid pre-

test.

Robust methods for inference about the coefficients of endogenous regressors when IVs are
weak and errors are heteroskedastic and serially correlated are also available (Andrews and Stock,
2006; Kleibergen, 2007). Pre-testing procedures can be less computationally demanding, and
their use is widespread because of their simplicity and transparency. We therefore view this

paper as complementary to robust inference methods.

The rest of the paper is organized as follows. Section 2 introduces the model, and presents
the generalized and simplified testing procedures. Section 3 derives asymptotic distributions,
and shows that conditional heteroskedasticity and serial correlation can effectively weaken
instruments in an illustrative example. Section 4 derives the expressions for the TSLS and
LIML Nagar biases, and describes the test statistic and critical values. Section 5 discusses
the implementation of the critical values by Monte Carlo simulation and Patnaik (1949)’s
methodology. Section 6 applies the pre-testing procedure to the IV estimation of the EIS.

Section 7 concludes. All proofs are collected in Appendix A.



2. MODEL AND SUMMARY OF TESTING PROCEDURE

2.1 Model and Assumptions

We consider a linear IV model in reduced form with one endogenous regressor and K instru-

ments

Yy = ZHﬂ—i"Ul (1)

Y = ZIO + v, (2)

The structural parameter of interest is 3 € R, while II € R¥ denotes the unknown first
stage parameter vector. The sample size is S and the econometrician observes the data set
{ys, Yy, Z,}5_,. We denote observations of the outcome variable, the endogenous regressor,
and the vector of instruments by y,, Y and Z,, respectively. The unobserved reduced form
errors have realizations vjs, j € {1,2}. We stack the realized variables in matrices y € R,

Z € R®K and v; € R®, j € {1,2}.

Our analysis extends straightforwardly to a model with additional exogenous regressors. In
the presence of additional exogenous regressors, TSLS and LIML estimators are unchanged if
we replace all variables by their projection errors onto those exogenous regressors. TSLS and
LIML are also invariant to normalizing the instruments to be orthonormal. We can therefore
assume without loss of generality that there are no additional exogenous regressors, and that
7'7]S = lIx. When implementing the pre-test, an applied researcher needs to normalize the

data.

We model weak instruments by assuming that the IV first stage relation is local to zero,

following the modeling strategy in Staiger and Stock (1997).

Assumption L. (Local to Zero) IT = IIg = C/+/S, where C' is a fixed vector C' € R,



Additional high-level assumptions allow us to derive asymptotic distributions for IV estima-
tors and F statistics. TSLS and LIML estimators and first stage F statistics depend on the

statistics Z'v;/+/S, and estimates of the covariance matrices W and Q as defined below.

Assumption HL. (High Level) The following limits hold as S — oc.

Z'vi JVS Wy W
1/ 4, Nog (0, W) for some positive definite W = ! 2
Z'vy /NS Wi, W,
2
/ P - . _ wWp W12
2. [v1,v9) [v1,v2]/S = Q for some positive definite Q2 =
w12 w%

3. There exists a sequence of positive definite estimates {/W(S )}, measurable with respect

to {ys, Ys, Z,}5_,, such that /W(S) LW as S — oo

Assumption HL is satisfied under various primitive conditions on the joint distribution of
(Z,v1,v9); see Supplementary Materials C.2 for examples. Assumption HL.1 is satisfied
as long as a Central Limit Theorem holds for Z'v;/v/S. Assumption HL.2 holds under a
Weak Law of Large Numbers for [vy, vs]'[v1, v2]/S. Assumption HL.3 assumes that we can

consistently estimate the covariance matrix W from the observable variables.

Assumption HL allows for a general form of W, similarly to the models in Miiller (2011)
and Mikusheva (2010). This is our key generalization from the model in Staiger and Stock
(1997), who require W to have the form Q® I;. The Kronecker form arises naturally only in
the context of a conditionally homoskedastic serially uncorrelated model. Our generalization
is therefore relevant for practitioners working with heteroskedastic, time series, or panel data,

and it is consequential for econometric practice.



2.2 Implementing the Testing Procedure
2.2.1 Generalized Test

The generalized testing procedure can be implemented in four simple steps. When rejecting
the null, the empirical researcher can conclude that the estimator Nagar bias is small relative
to the benchmark. Under the null hypothesis, the Nagar bias of TSLS or LIML is greater
than a fraction 7 of the benchmark. Critical values for the effective F statistic depend on
the desired threshold 7, the desired level of significance «, and estimates for the matrices
W, Q. Critical values also vary between TSLS and LIML. In our numerical results, we focus

on 7 = 10% and a = 5%.

1. If there are additional exogenous regressors, replace all variables by their projection

residuals onto those exogenous regressors. Normalize instruments to be orthonormal.

2. Obtain W as the estimate for the asymptotic covariance matrix of the reduced form
OLS coefficients. Standard statistical packages estimate this matrix (divided by the
sample size S) under different distributional assumptions. For cross-sectionally het-
eroskedastic applications, use a heteroskedasticity robust estimate; for time series ap-
plications, use a heteroskedasticity and autocorrelation consistent (HAC) estimate; and

for panel data applications, use a “clustered” estimate.

3. Compute the test statistic, the Effective F' Statistic

B lY’ZZ’Y
I St’l“(Wg)

where ¢r(-) denotes the trace operator.



4. Estimate the effective degrees of freedom

N [tr (Wg) }2(1 + 22)
tr (Wf) + 2xtr </VI72) max eval (Wa)

where z = B.(W,Q)/7 for e € {TSLS, LIML} (5)

Here, max €UGZ(W2) denotes the maximum eigenvalue of the lower diagonal K x K block
of the matrix W. The function Be(/W, Q) is closely related to the supremum of the
Nagar bias relative to the benchmark; see Theorem 1.2. The numerical implementation
of B, (ﬁ/\, Q) is discussed in Remark 5, Theorem 1. A fast numerical MATLAB routine

—~ o~

is available for the function B.(W ().

The generalized test rejects the null hypothesis of weak instruments when ﬁe 7 exceeds

the critical value.

2.2.2 Simplified Test

A simplified conservative version of the test is available for TSLS. The simplified procedure
follows the same steps, but sets x = 1/7 in Step 4. For a given effective degrees of freedom
IA(eff, the simplified 5% critical value can be conveniently read off Table 1. For instance,
the critical value for a threshold 7 = 10% can be found in the column with z = 10. The
simplified test does not require numerical evaluation of Be(/W, Q), for it uses the bound
BTSLS(W,Q) < 1, proved in Theorem 1.3. The matrix W enters only through the lower

K x K block W,



Table 1
Critical Values:
Upper 5% Quantile of x% . (vKecfy) /Keyy

Kepp =333 =5 =10 =20

1 12.05 15.06 23.11 37.42
2 9.57 12.17  19.29 32.32
3 8.53 10.95 17.67 30.13
4 7.92 10.23  16.72 28.85
3 7.51 9.75  16.08 27.98
6 7.21 9.40  15.62 27.35
7 6.98 9.14  15.26 26.86
8 6.80 8.92  14.97 26.47

9 6.65 8.74 14.73 26.15
10 6.52 8.59  14.53 25.87
11 6.41 8.47  14.36 25.64
12 6.32 8.36  14.21 25.44
13 6.24 8.26  14.08 25.26
14 6.16 8.17  13.96 25.10
15 6.10 8.10  13.86 24.96
16 6.04 8.03  13.77 24.83
17 2.99 796  13.68 24.71
18 5.94 791  13.60 24.60
19 2.89 7.85  13.53 24.50
20 5.85 7.80  13.46 24.41
21 5.81 776  13.40 24.33
22 D.78 7.72  13.35 24.25
23 5.74 7.68  13.29 24.18
24 5.71 7.64 13.24 24.11
25 5.68 7.61  13.20 24.05
26 5.66 7.57  13.15 23.98
27 5.63 754  13.11 23.93
28 5.61 7.51  13.07 23.87
29 2.58 749  13.04 23.82
30 5.56 746  13.00 23.77

NOTE: Critical values computed by Patnaik (1949)
method. For generalized and simplified testing pro-
cedures, estimate K ¢f as in (31). For a Nagar bias
threshold 7 (e.g. 7 = 10%) set « = 1/7 for the sim-
plified procedure. For the generalized procedure, set
x = Be(ﬁ/\, Q)/7; see Step 4 in Section 2.2.1.



3. ASYMPTOTIC DISTRIBUTIONS AND AN EXAMPLE

3.1 Illustrative Example

A simple example illustrates that heteroskedasticity and serial correlation impact the entire
asymptotic distribution of both TSLS and LIML estimators, and can effectively weaken
instruments. In this example, the first stage F' statistic rejects the null hypothesis of weak
instruments too often, while the effective F statistic allows for testing for weak instruments

with asymptotically correct size.

For the sake of exposition, assume G = 0. Also assume that the departure from the condi-

tionally homoskedastic serially uncorrelated framework takes the particularly simple form

W=ad*Q®Ik) (6)

a is a scalar parameter and for a = 1 the expression (6) reduces to the conditionally ho-
moskedastic case.

Remark 1. We can generate example (6) with a purely conditionally heteroskedastic data-
generating process. Let {Zg, 15, 025} identically and independently distributed (i.i.d.). Let
instruments independent with E[Z] = 0, E[Z7] = 1, E[Z}] = 0, E[Z]] = a* Let
(D1, D2s) ~ Na ((0,0), Q) independently of Z,. Let the reduced form errors vy, = 01,15 Z;,
Ugs = Ul Zys. Then E ([v1s, vay] [Uls,Ugs]/) = Q and E ([vis, va,) [U1s, Vas] ® 2,2 =
a*Q @ Ix. HL.1, HL.2, and (6) follow from the Central Limit Theorem and the Weak Law
of Large Numbers.

Remark 2. We can alternatively generate (6) with a simple serially correlated data-generating
process. Assume that instruments and reduced form errors follow independent AR(1) pro-
cesses Lysy1 = Pz0ks + €hst1, b = 1, ... K and vjep1 = pyvjs + Njsy1,J = 1,2, Let € and

n;s serially uncorrelated with mean zero, E(ese,) = (1 — p%) X Ix and E[ns, 72s) [, 2s] =

10



(1 —p%) x Q. Then E [v1,, voy] [v1s, v2s] = Q and E (Z,Z") = 1. HL.1, HL.2 follow from the
Central Limit Theorem and the Weak Law of Large Numbers. Expression (6) holds with
a = (14 pvpz)/(1 — pzpy). Serial correlation in both the instruments and the errors is
required for a # 1. As a numerical example, moderate serial correlation of py = pz = 0.5

gives rise to a = 1.67.

With Assumptions Ly and HL the asymptotic distribution of the TSLS estimator

Brsis = [Y'Z(Z’Z)_1 Z’Y]_1 Y'Z(2'2)7 Z'n, )
! -1
%) aw? awsy aws aws
y < c Z’v2/\/§> Z'01//S o
awz aws awq
S S ] g )
W2
where ¥V ~ Nog Ok ’ 1 wiz/ (wiws) -
¥y C/(a W2) wlz/(w1w2) 1

The asymptotic TSLS distribution depends only on the elements of the non-central Wishart
matrix [11, ¥9] [th1, 12] Hence, the vector of first stage coefficients C' and the parameter a
enter into the asymptotic distribution in (10) only through the noncentrality parameter

C'C/a*w3, so C'C/a*w3 summarizes instrument strength.

In this example, heteroskedasticity and serial correlation affect the biases and test size dis-
tortion of TSLS and LIML estimators in the same way as a weaker first stage relationship.
The conditionally homoskedastic serially uncorrelated case obtains for a = 1, so the TSLS
estimator is asymptotically distributed as if the errors were conditionally homoskedastic se-
rially uncorrelated, and the first stage coefficients were reduced by a factor of a. We prove

an analogous result for LIML in Appendix A.

Consider a null hypothesis for weak instruments of the form (C'C'/w3a?K) < z. In the

11



presence of conditional heteroskedasticity or serial correlation of the form (6), the first stage
F statistic is asymptotically distributed as a?x% (C'C/w3a®) /K. As a increases without
bound, the noncentrality parameter goes to zero and instruments become arbitrarily weak,
but the first stage F' statistic diverges to infinity almost surely. On the other hand, the
effective F statistic is asymptotically distributed as a x3 (C'C'/w?a®) /K, so we can reject
the null hypothesis of weak instruments with confidence level o whenever F\eff exceeds the

upper a quantile of Y% (z x K) /K.

3.2. Asymptotic Distributions

Definition 1. Denote the projection matrix onto Z by P, = ZZ'/S and the complementary

matrix by MZ = I[S — Pz.

1. The Two-Stage Least Squares (TSLS) estimator

Brsis = (Y'PzY) " (Y'Pzy) (11)

2. The Limited Information Likelihood (LIML) estimator
Brinve = (Y'(Is — koo Mz)Y )" (Y (Is — koo Mz)y) (12)
where kprarp 18 the smallest root of the determinantal equation
[y, YTy, Y] = kly, Y] Mz[y,Y]| =0 (13)

3. The non-robust first stage F statistic

Y'PY

F
K2

(14)



Y -PzY)' (Y-PzY)
S—K-1

where ©3
4. The robust first stage F statistic

~  Y'IZWS'Z'Y

= (15)
(K) (5)
where Wg is the lower diagonal K x K block of the matrix w.
5. The effective first stage F statistic
~ Y'PyY
Feff = — (16)
tr <W2)

Lemma 1 derives asymptotic distributions for these statistics, generalizing Theorem 1 in
Staiger and Stock (1997).

2
. 01 012
Lemma 1. Write 07 = w?—2Bwia+[%w3, 019 = wis—Pw?, 05 = w3 and 3 =

2
012 0'2

Under Assumptions Ly and HL the following limits hold jointly as S — oo.
—~ i . B
1. Brsps — B = Brsrs = (1272) ™ %2 (= Br)

2. Brivr — B = Birur = (VyY2 — KLimrws) ! (vo(v1 — By2) — krrwr(wia — Bw3))

where ki is the smallest root of |[v1 — Oy, V2] [v1 — B2, 2] — kX =0

5. ﬁeff i) Fe*ff = Vg/ﬁg/tT(Wg)
Where

C
T o Nk & W (17)

Y2 C

Proof. See Appendix A. O
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The limiting distributions are functions of a multivariate normal vector whose distribution
depends on the parameters (3,C), and on the matrix W. We treat the asymptotic distri-
butions in Lemma 1 as a limiting experiment in the sense of Miiller (2011), and use it to

analyze inference problems regarding (3, C).

4. TESTING THE NULL HYPOTHESIS OF WEAK INSTRUMENT'S

We base our null hypothesis of weak instruments on a bias criterion. We follow the standard
methodology in Nagar (1959), and approximate the asymptotic TSLS and LIML distributions
to obtain the Nagar bias. Under standard asymptotics, the Nagar bias for both estimators
is zero everywhere in the parameter space, but under weak instrument asymptotics, the bias
may be large in some regions of the parameter space. We consider instruments to be weak
when the estimator Nagar bias is large relative to a benchmark, extending the OLS bias

criterion in Stock and Yogo (2005).

4.1 Nagar Approximation

Theorem 1. (Nagar Approximation) Let W € R*(>2K positive definite. Write C € RE
as C = ||C||Cy and let p* = [[C]]?/tr(Wy). Define Sy = Wy — 26Wiy + 2Wy, Sia =
Wis — BWa, Sy = Wy and the benchmark BM (3, W) = \/tr(S;)/tr(Ss). We write SK=1 for

the K — 1 dimensional unit sphere.

1. Fore € {TSLS, LIML} the Taylor expansion of 3 around p~' = 0 gives the Nagar
(1959) bias
Ne(ﬂa Cqu> :/~L_2ne(ﬁu Co,VV,Q) (18>

14



with

t’l“(Slg) C(/)SlgCQ
Q) = 1—-2———— 1
nTSLS(/@>COaVV7 ) t’f’(Sg) |: t’f’(Slg) ( 9)
t’l“(Slg) — %tr(Sl) — 06 (2512 — (:7—112251> C()
nrivn(8,Co, W, Q) = tr(Ss)
(20)
2. Fore € {TSLS, LIML}:
B (W Q) ne(ﬁvcovmg) (21)
e ) = sup < 0
BER,CoeSK—1 BM(B,W)
3. Brsps(W,Q) <1
Proof. See Appendix A. O

Remark 3. The Nagar bias is the bias of an approximating distribution. It equals the
expectation of the first three terms in the Taylor series expansion of the asymptotic estimator
distribution under weak instrument asymptotics. It is therefore always defined and bounded
for both TSLS and LIML. While the asymptotic estimator bias may not always exist, our
test is still well motivated. Under the null hypothesis, the Nagar bias can be large, but under
the alternative hypothesis, the Nagar bias is small; see Section 4.2. Under certain conditions,
we can also prove that the Nagar bias approximates the asymptotic estimator bias as the
concentration parameter p? goes to infinity; see Supplementary Materials C.1.

Remark 4. We interpret the benchmark BM (3, W) = /tr(S;)/tr(S2) as a “worst-case”

bias. An ad-hoc approximation of E[3}.¢; | as a ratio of expectations as in Staiger and Stock

15



(1997) helps convey the intuition:

« t’f’(Slg)
EfrsLs] r(So)[1 + 122 (22)
~ 1 t’l“(Slg) t’l“(Sl) (23)

[+ 12] \/tr(S2)\/tr(S) | tr(S2)

The first factor is maximized when instruments are completely uninformative and p?=0,
while the second factor is maximized when first and second stage errors are perfectly corre-
lated (Liu and Neudecker (1995)).

Remark 5. In the implementation of our generalized testing procedure, we use the func-
tion B(W,€) to bound the Nagar bias relative to the benchmark. We provide a fast and
accurate numerical MATLAB routine for B.(W,(2). For any given value of the structural
parameter 3, we compute the supremum over Cy € S¥~1 analytically using matrix diagonal-
ization. We then compute the limits of supg, csx-1 |ne(3, Co, W, Q)| /BM (3, W) as 3 — Fo0.
Finally, we numerically maximize the function supg csx-1 |ne(3, Co, W, Q)|/BM(j3,9) over

g € [—X, X], where X € RT is chosen sufficiently large.

4.2 Null hypothesis

For a given threshold 7 € [0, 1] and matrix W € R?X*2K we define the null and alternative

hypotheses for e € {T'SLS, LIM L}
HY: 12 € H (W, Q) w.s. H!:p?¢ H (W, Q) (24)

where

N (B, p/trWoCo, W, Q)}
HW, Q) =< u? eR, - su } > T
(W) {“ 7 pemopesxot BM(3, W)

16



Under the null hypothesis, the Nagar bias exceeds a fraction 7 of the benchmark for at least
some value of the structural parameter § and some direction of the first stage coefficients
Cy. On the other hand, under the alternative, the Nagar bias is at most a fraction 7 of the

benchmark for any values (3, Cp).

4.3 Testing Procedures

We base our test on the statistic ﬁeff, which is asymptotically distributed as a quadratic
form in normal random variables with mean 1 + p?; see Lemma 1. For a survey of this
class of distributions, see Johnson et al. (1995, chap. 29). Denote by Fg %,Vz(a) the upper a

quantile of the distribution ~5vs /tr(Ws), where vo ~ N (C,W5) and let

c(a, Wa, ) = sup {Fgy, (@) Lorcyrmwa)<a } (26)
CeRX

14(-) denotes the indicator function over a set A. We base the generalized test on the
observation that H.(W, Q) = [0, B.(W,)/7). The generalized procedure is applicable to

both TSLS and LIML, and it rejects the null hypothesis H? whenever
Fupp > c(o, Wa, B.(W,Q)/7) (27)

Lemma 2. Under Assumptions L, and HL the generalized procedure is pointwise asymptot-

ically valid, 1.e.

—

sup lim P(F\eff > C(OK,/W% Be(Waﬁ>/T>) S Q
He(W,Q) S0

—

Furthermore, provided that B(W, ﬁ) is bounded in probability
iz oo lims oo (ﬁeff > (o, W, B(W, ) /T) ~1 (28)
Proof. See Appendix A. O

17



The inequality in Theorem 1.3 implies a simplified asymptotically valid test for TSLS, which

rejects the null hypothesis H. (W, Q2) whenever
Fopp > c(o, Wa, 1/7) (29)

With c(oz,I//[/\2, 1/7) > c(oz,/W2,BT5LS(W, 2)/7) the simplified procedure is asymptotically
valid and weakly less powerful than the generalized procedure. The simplified test is con-
servative, in the sense that under the alternative hypothesis, the TSLS Nagar bias is lower

than the threshold for any degree of dependence in the second stage.

5. COMPUTATION OF CRITICAL VALUES

We provide two simple methods to compute the critical value ¢(a, Wa, ). Our first method
generates Monte Carlo critical values ¢, (o, W, z). We obtain estimates of Fg; v, (@) as the
sample upper « point from a large number of draws from the distribution of 747,/ tr(Wg),

and then maximize over a large set of C, such that C'C//tr(W;) < x.

The second procedure is based on a curve-fitting methodology first suggested by Patnaik
(1949). Patnaik (1949) and Imhof (1961) approximate the critical values of a weighted sum
of independent non-central chi-squared distributions by a central x? with the same first and
second moments. We analogously approximate the distribution Fcy, by a non-central x?
with the same first and second moments. Our approximation errors are therefore bounded

by the original Patnaik errors through a triangle inequality. We use

Foy,(a) &

J(@) (30)

where K,y is possibly fractional with

1+ 2
(W2) + 2C"WLC

Kepp = [tT(Wz)]ztr

18



There is a large literature that approximates distributions by choosing a family of distribu-
tions and selecting the member that fits best, often by matching lower order moments of the
original distribution (Satterthwaite, 1946; Theil and Nagar, 1961; Henshaw, 1966; Pearson,
1959; Grubbs, 1964; Conerly and Mansfield, 1988; Liu et al., 2009). The non-central chi-

squared distribution is a natural choice, because it is exact in the homoskedastic case.

While it is hard to assess the accuracy of these curve-fitting approximations analytically,
they are often simple and numerically highly accurate (Rothenberg, 1984). Authors demon-
strate the degree of accuracy of their approximations using numerical examples. In the
Supplementary Materials B.1, we verify that the approximation (30) is numerically as accu-
rate as the original central Patnaik distribution for the quadratic forms considered in Imhof
(1961); approximation errors are at most 0.7 % points in the important upper 15% tail of

the distributions.

Numerical results, such as in Table 1, clearly indicate that upper a quantiles of (30) are
decreasing in K.sr. Moreover, the upper o quantile in (30) is nondecreasing in the noncen-
trality parameter pu? (Ghosh, 1973). Taking the supremum over C' with C'C/tr(W,) < z,
suggests the Patnaik critical value.

Definition 2. (Patnaik Critical Value) Define the Patnaik critical value as

— -1
CP(O()W27I) = F(I/Keff)X%(eff(mKeff)(a) (32)

with the effective number of degrees of freedom

tr(W2)?(1 + 2x)
tr(W2) + 2tr(Ws) max eval (Ws)x

Keff = (33)

We numerically analyze the sizes of Monte Carlo and Patnaik critical values for bench-
mark parameter values o = 5% and x = 10, and find that size distortions are small for

both methodologies. Monte Carlo critical values are computed with 40000 draws from
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Voy2 [tr(Ws), and we replace the infinite set of vectors C's.t. C'C'/tr(W3) < x by a finite set of
size 500. We use code for iy, (x) available at http://elsa.berkeley.edu/~ruud/cet/pgms.htm
(Imhof, 1961; Koerts and Abrahamse, 1969; Farebrother, 1990; Ruud, 2000). For 400 matri-
ces Wy from a diffuse prior with K € {1,2,3,4,5} our numerical values for

MaXcrc jrwy<a Fows (Cm) Tange between 4.77% and 5.26%, and our numerical values for
MaXcrc/yrw,<a Fows(cp) range between 5.00% and 5.02%. For further details and MAT-

LAB routines, see Supplementary Materials B.2-B.5.

Our generalized and simplified critical values differ from those proposed by Stock and Yogo
(2005) for the TSLS bias, even when first- and second-stage errors are perfectly conditionally
homoskedastic and serially uncorrelated. In this case, the effective F statistic coincides with
the Stock and Yogo (2005) test statistic. We obtain different critical values because, unlike
them, we use an approximation to evaluate the weak instrument TSLS bias. Moreover,
estimating W and Q also generates differences in critical values. The difference between
our generalized TSLS critical values and analogous Stock and Yogo (2005) critical values

becomes small as the number of instruments becomes large.

In the Supplementary Materials B.6, we tabulate Stock and Yogo (2005) 5% critical values
for testing the null hypothesis that the TSLS bias exceeds 10% of the OLS bias and our
generalized and simplified critical values with a threshold of 10% and size 5%, assuming
conditional homoskedasticity and no serial correlation. TSLS critical values are smaller than
Stock and Yogo (2005) critical values for K = 3,4, but larger than Stock and Yogo (2005)
critical values for K > 5. The difference between the TSLS and Stock and Yogo (2005)
critical values is always less than 1. The LIML critical values decline more rapidly with the
number of instruments than either the TSLS or simplified critical values. The simplified
critical values exceed the generalized TSLS critical values, because they use a bound that

applies for any form of the matrix W.
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6. EMPIRICAL APPLICATION: ESTIMATING THE ELASTICITY OF
INTERTEMPORAL SUBSTITUTION

We now apply our pre-testing procedure to an empirical example, and show that allowing

for heteroskedasticity and time series correlation can affect pre-testing conclusions.

The literature has focused on estimating the linearized Euler equation in two standard IV
frameworks (Hansen and Singleton, 1983; Campbell and Mankiw, 1989; Hall, 1988; Campbell,

2003).

Aciyr = v4Yrgg +u and EZyuy =0 (34)

rip1 = {4 (1/¥)Acir + nep1 and EZin, = 0 (35)

¥ is the Elasticity of Intertemporal Substitution (EIS), Ac;; is consumption growth at
time ¢t 4+ 1, 7,41 is a real asset return, and v is a constant. The vector of instruments is
denoted by Z;. We follow the preferred choice of variables in Yogo (2004), using as r; the
real return on the short-term interest rate, and as instruments the nominal interest rate,
inflation, consumption growth and the log dividend-price ratio, all lagged twice. We use

quarterly data from Yogo (2004).

The EIS determines an agent’s willingness to substitute consumption over time. Its magni-
tude is important for understanding the dynamics of consumption and asset returns (Epstein and Zin,
1989, 1991; Campbell, 2003). While time-varying volatility can introduce additional bias into
the estimation of the EIS (Bansal and Yaron, 2004), Yogo (2004) argues that under certain

types of conditional heteroskedasticity the EIS can still be identified.

Table 2 compares pre-tests for weak instruments for 11 countries. Panel A shows weak in-
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Table 2

Estimating the Elasticity of Intertemporal Substitution:
Weak Instrument Pre-Tests

Panel A: Aciy1 = v + ¢ + ugrr and E[Zyuy] =0

Country Sample Period F F, Fopp cgimp  Crsis  cuimn Yrsis VLML
USA 1947.3-1998.4 15.53 8.60 794 1820 1549 9.68 0.06 0.03
AUL 1970.3-1998.4 21.81 27.56 17.52 18.36 16.64 10.25 0.05 0.03
CAN 1970.3-1999.1 15.37 11.58 1295 1895 1738 11.44 -0.30 -0.34
FR 1970.3-1998.3 38.43 41.67 40.29 19.51 17.01 12.89 -0.08 -0.08
GER 1979.1-1998.3 17.66 1247 11.66 1824 16.30 10.01 -0.42 -0.44
ITA 1971.4-1998.1 19.01 25.09 19.44 19.26 17.37 12.98 -0.07 -0.07
JAP 1970.3-1998.4  8.64 832 5.09 21.66 20.24 18.71 -0.04 -0.05
NTH 1977.3-1998.4 12.05 9.31 10.53 18.89 17.18 11.28 -0.15 -0.14
SWD 1970.3-1999.2 17.08 28.86 19.82 19.04 15.59 11.65 0.00 0.00
SWT 1976.2-1998.4  8.55 6.68 7.19 1849 1580 10.38 -0.49 -0.50
UK 1970.3-1999.1 17.04 11.78 7.65 20.18 18.72 14.57 0.17 0.16
Panel B: 71 =&+ (1/¢)Acir1 + ey and E[Zim] =0

Country Sample Period F F, F.rt  CSimp  CTSLS  CLIML Q/’Eles wgﬁm
USA 1947.3-1998.4  2.93 3.37 258 1761 1399 10.23 0.68 34.11
AUL 1970.3-1998.4  1.79 287 231 1989 17.25 15.70 0.50 30.03
CAN 1970.3-1999.1  3.03 599 270 18.19 1589 9.77 -1.04 -2.98
FR 1970.3-1998.3  0.17 0.39 0.22 19.83 18.08 14.09 -3.12 -12.38
GER 1979.1-1998.3  0.83 2.48 1.13 18.58 16.98 14.19 -1.05 -2.29
ITA 1971.4-1998.1 0.73 0.39 047 19.05 16.96 11.63 -3.34 -14.81
JAP 1970.3-1998.4  1.18 217 2.00 1794 1393 15.58 -0.18 -21.56
NTH 1977.3-1998.4  0.89 3.62 1.84 19.00 16.13 15.30 -0.53 -6.94
SWD 1970.3-1999.2  0.48 081 0.83 1724 12,51 9.73 -0.10  -399.86
SWT 1976.2-1998.4  0.97 2.28 1.56 20.21 18.76 16.47 -1.56 -2.00
UK 1970.3-1999.1  2.52 3.95 2.55 17.94 15.64 14.50 1.06 6.21

NOTE: Ac is consumption growth and 7 is the ex-post real short-term interest rate. We instrument using

twice lagged nominal interest rate, inflation, dividend-price ratio, and consumption growth. HAC variance-

covariance matrix W estimated with OLS and Newey-West kernel with six lags. F' statistic in bold when

it exceeds the critical value of 10.27. This is the 5% critical value for testing the null hypothesis that

the TSLS bias exceeds 10% of the OLS bias under the assumption of conditional homoskedasticity and no
serial correlation (Stock and Yogo, 2005). We show simplified, TSLS, and LIML critical values cgimp =
Cp(5%, /WQ, 10), CTSLLS — Cp (5%, /W\Q, 10 X BTSLS(/W7 ﬁ)), and CLLIML = Cp (5%, WQ, 10 X BLIML(/W, ﬁ))
Critical values are in bold when exceeded by ﬁeff. @TSLS, z/AJLIML, mTSLS and wLIML are TSLS and
LIML estimates of the EIS and its inverse.
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strument pre-tests with the ex-post real interest rate as the endogenous variable, while Panel
B shows weak instrument pre-tests with consumption growth as the endogenous variable.
The non-robust first stage F statistic in column 1 is shown in bold whenever it exceeds
the Stock and Yogo (2005) critical value 10.27. This is the 5% critical value for testing the
null hypothesis that the TSLS bias exceeds 10% of the OLS bias under the assumption of
conditional homoskedasticity and no serial correlation. As in Yogo (2004), this homoskedas-
tic pre-test indicates strong instruments in Panel A, but cannot reject weak instruments in

Panel B for almost all countries in the sample.

The second and third columns report the HAC robust first stage F statistic and the effective
F statistic computed with a Newey-West kernel and six lags. We show 5% critical values for
TSLS, LIML, and simplified pre-tests for the null hypothesis that the respective Nagar bias

exceeds 10% of the “worst-case” benchmark.

In Panel A, we see that allowing for heteroskedasticity and serial correlation changes the
pre-testing results for some countries, while for other countries all pre-tests yield the same
conclusion. The effective F statistic can be smaller or larger than the regular or robust F
statistics. Simplified critical values always exceed TSLS critical values. LIML critical values

tend to be smallest.

The results in Table 2A for the U.S. are particularly striking. While the U.S. regular F
statistic clearly exceeds the homoskedastic threshold of 10.27, the robust and effective F
statistics are significantly smaller. The effective F does not exceed the simplified, TSLS,
or LIML critical values, so we cannot reject the null hypothesis of weak instruments under

heteroskedasticity and serial correlation.

Panel B shows weak instrument pre-tests for the instrumental variable estimation of the
inverse of the EIS. For this estimation, the results are consistent between homoskedastic and
HAC weak instrument pre-tests. We cannot reject that instruments are weak for any of the

countries in the sample.
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The last two columns in Table 2 show the point estimates for 1) and 1/1. For those cases
where we can reject weak instruments under heteroskedasticity and serial correlation, the
corresponding EIS point estimates are close to zero and often negative. Additional caution
is, however, warranted in this interpretation, because as the number of countries increases,

we are more and more likely to reject weak instruments at least once.

Our results confirm Yogo (2004)’s finding that the EIS is small and close to zero. However,
we also note that conditional heteroskedasticity and serial correlation may further weaken

instruments and may affect TSLS and LIML bias in several of the country-specific regressions.

7. CONCLUSION

Heteroskedascticity, serial correlation, and panel data clustering can affect instrument strength.
This paper develops a robust test for weak instruments that allows empirical researchers to

test the null hypothesis that the TSLS or LIML Nagar bias is large relative to a benchmark.

The test is based on a scaled version of the regular F statistic. Critical values depend on
the covariance matrix of the reduced form coefficients and errors. Our general test requires
computational work to evaluate the Nagar bias of TSLS or LIML. A simplified conservative
version does not require this step, but is only available for TSLS. Critical values can then be
implemented as quantiles of a non-central chi-squared distribution with non-integer degrees

of freedom.

Pre-tests based on the robust (or non-robust) first stage F statistic with Stock and Yogo
(2005) critical values are commonly applied outside the conditionally homoskedastic serially
uncorrelated framework. However, to the best of our knowledge, there is no analysis sup-
porting this practice. This paper offers an alternative: a simple, asymptotically valid test

that should be used for conditionally heteroskedastic, time series, and clustered panel data.
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APPENDIX A - Proofs and additional results are optional and can be moved

to the Supplementary Materials

A.1 Proof of Lemma 1

First note the preliminary result that under Assumptions Ly and HL

V(2w (st zus -
VS zv C+ Z'vy/V/S
O (37)
Y2

1. Brsrs = (Y'PyY) L (Y'Pyy) = (Y'Z(Z'2)'2'Y) "N (Y'Z(Z'Z)"' Z'y). Since we have
assumed that Z'Z/S = I, the result follows from (37) and the continuous mapping

theorem.

1 0
2. Write J = and k = S(k — 1). Note that J is nonsingular and so the roots

B 1
of [y, Y[y, Y] — k[y, Y] Mz[y,Y]| = 0 are the same as of
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|y, YV y,Y]J — kJ'[y, Y] Mzly,Y]J| = 0. Moreover

. YTy, Y] = L+ /)y, YI'Mzly, Y] =ly, Y] Prly, Y] — &ly, Y]'Mzly,Y]/S

i[vl, Y2l [71, 72] — kK uniformly in k over compact sets. The solutions of

Iy, Yy, Y] — (1 + &/S)[y,Y]'"Mz[y,Y]| = 0 therefore converge to those of
|1, 72) [0, 7o) — kJ'QJ| = 0. With J'QJ = ¥ thus S(krrar — 1) > k70 where

Krivmr is as given in Lemma 1.2.

Then ELIML — p=
[Y/(HS — I%LIMLMZ)Y:| ) [Y/(]IS - ]%LIMLMZ)(y - ﬁY)]

~ ’ -1 ~ ’ —
= [Y/PZY — S(krive — 1)%} [Y'Py(y — BY) — S(kprar — 1) Y M2=0Y))

d _
—>[7§72 - KLIMLU%] ! [72(71 — 572) — HLIML012]

3. Note that @% = (Y—P2Y)/(Y—P2Y)/(S—K—1) = (Ug—Pz’Ug)/(Ug—Pz’Ug)/(S—K—l)
iw% by Assumptions Ly and HL. The result follows from (37) and the continuous

mapping theorem.

4. and 5. follow from (37), the continuous mapping theorem, and Assumptions Ly and

HL.

A.2 LIML Distribution in Illustrative Example

We show that in the illustrative example heteroskedascity and serial correlation can effec-
tively make instruments weaker for LIML. Assume W = a?Q®Ix. Remember that @L IML =
argming(y — BY) Py(y—BY)/(y—BY) (y—BY). We will analyze the weak instrument limit

of the LIML objective function. Note that, using assumptions Ly and HL Z'(y — BY) /'S

d ~
—y1 = B7e.

Moreover, (y — (YY) (y — 3Y)/S & w? — 2wy + [?w? uniformly in 3 over compact sets.
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Hence (37 1y, is distributed according to

) (wﬂﬁl - szwz), (Wlwl - Bwﬂb)
argmina = ~
g CU% — 2Bw1s + ﬁ%)%

Hence, just as for the [rsrs, the vector of first stage coefficients C' and the parameter

a enter into the asymptotic distribution [3j;,,; only through the noncentrality parameter

C'C/(a*w3).

A.3 Proof of Theorem 1

A.3.1 Proof of Theorem 1.1

We follow Rothenberg (1984) in developing the Nagar (1959) moments for the TSLS and

LIML estimators. We need to expand (3}, ¢ and 57, as second order Taylor expansions

in ;= around p~! = 0.

We start by developing the Taylor expansion for kprp. Write z, = e

(11— B2)

and z, = S5 L/ 2(72 — C) so z, and z, are standard multivariate normal. Also write A =

pitr (S2)Y? 82 Cy where Cy = C/ ||C]|.

krrvr is defined as the smallest root of the determinantal equation

where

2
o 012
det | A— RLIML ! =0
012 O'%
21 S1 2y, 2;511/2521/2 (A z)

28122+ 2) (20 +A) S (20 + A)
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We can rewrite this as a quadratic equation

RLIML ? _ 012,@11 + 0%@2 — 2a12012 KLIML det A —0 (39)
2 p? det 2 ptdet
We use the method of undetermined coefficients. Write
Koot > =co+ap +ep >+ 0 (p°) (40)
for unknown constants cg, ¢1, co. Similarly write
d(p) = TR 20000 g g g0 (i) (41)
N p? det 3 0T 2
det A det A _ _ _
e(p) = = =eo+ep  +ep +0 (u?) (42)

ptdety  ptdet X

where the Taylor series expansions for d and e give dy = o%tr (Sy) /det X, eg = 0, ¢; = 0,

2
and ey = tr (Sz) {z;Slzu — (z 51/2 ) } /det 3.

Substituting (40), (41) and (42) into the quadratic equation (39) and equating coefficients

gives ¢y (cg — dp) = 0 Since we are interested in the smaller solution, we have ¢y = 0. Then

2
co=0,c1=0,c0 = &3/dy and 80 Kprppp 2 = é {z;Slzu — (z 51/20 ) } p 2+ 0(u3)

We then expand 37,1

g OSSPt (Sy)
LIML — M tr(Sg)

<z Si2giz, (0'51/2 ) (0’51/2 ) . 02012)

+,u_2

+0 (1

S)
)
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Taking the expectation of the first two terms gives the LIML Nagar bias as in the Theorem.

We can similarly derive the Taylor expansion for 3}.¢; ¢ according to

g b8Pt (Sy)'?
TSLS — :u tT(SQ)

iy () ()

+0 (/fg)

The Nagar bias is defined as the expected value of the first two terms, and hence equals

1 , _
Nrsps(B8,C,W,Q) = S, (trS1a — 2C3S12C0) p2

A.3.2 Proof of Theorems 1.2 and 1.3

We prove Theorem 1.3 first. We assume that W and €2 are positive definite, so S and ¥ are

also positive definite. Sis is real valued but not necessarily symmetric. Note that

t’/’Slg - 20651200 = tTngm - QC()Sf?ZJmCQ

A 0 0
where S73" = %(512 + S15) is the symmetric part of S1o. Write A= | 0 X\, ... 0

0 0 .. Xk
for the diagonal matrix of eigenvalues of S75". Assume the eigenvalues are ordered so

A1 > Ay > .. > Ag. For any real matrix M we write |M| = v M’'M so the Schatten 1-norm
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for matrices is defined as ||M]|, = tr|M|.

K
S — 200" Co <Y M — 2k
k=1

K-1

= ) Ak
k=1
K

< Zp‘k‘

k=1
= 155"

Similarly trS75" —2C) S5 Co > — ||S15 " ||,. Hence [trS75™ — 2C) S5 Co| < 1]0.5S512 + 0.55% ||,
< ||S12]];- The last step follows from the triangle inequality and from the fact that the eigen-

values of S],S12 and 51257, are the same.

Now t7(S}55; ' S12) < t1(S)), see e.g. Theorem 7.14 in Zhang (2010). By the matrix trace

Cauchy inequality (Liu and Neudecker (1995), Theorem 1) then

ISl = (tr[Spa])?
< trSotr (|S12]'S5 ' Sh2])

= tTSQtT(Si2S2_1512)

Putting this together, we get ||S12|; < /trSitrSs, proving Theorem 1.3.

The TSLS part of Theorem 1.2 follows from Theorem 1.3. For the LIML part note that

Brivr(W, Q) = supgeg grivr(3) where

trSis — ‘;—1122157’51 — mazeval Mg

vV t’l“Slv t’I“SQ

trSiy — %trb’l — minevalMp

vV t’f’Slv t’f’Sg

Y

grivr(B) = max <

(43)
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where Mp = %(2512 — 7251 + %(2512 - %251)/ and
1

3
91

mazxeval Wy

gLIML(/@) - Wasﬁ — F00 (44)

For W and 2 nonsingular gz, is continuous in ( everywhere, and hence bounded.

A.4 Proof of Lemma 2

Assume that W and €2 are nonsingular. We prove that the test that rejects if:
Furp > cla, Wy, B.(W,Q)/7) (45)

is asymptotically valid, i.e. its asymptotic size is at most a.
Claim 1: The function F(;%,Vz(a) is continuous in {C, Ws}.

Proof: : ~47y,/tr(W3) is a continuous random variable with nonzero density on R, , and
therefore F %VQ («) is strictly decreasing and continuous in « everywhere. By Van der Vaart
(2000, Lemma 21.2) the quantile function Fg, v, (@) is continuous in {C, W5} for any fixed

a.
Claim 2: The function B.(W, ) is lower semicontinuous.

Proof: The function ||n.(5, Co, W, Q)| /BM (3, W) is continuous in W and . B.(W, ) is
the supremum of continuous functions, and therefore is lower semicontinuous (Yeh, 2000, p.

274).
Claim 3: The function c(a, Wa, x) is lower semicontinuous in {Ws, z}.

Proof: The function Lerc/erwy)<e is an indicator function of an open set, and therefore
lower semicontinuous in {Ws,x}. The function Fg, Iv, (@) is continuous in W5 and greater

than 0. Hence the product F; %,Vz(a)]lc/c Jtr(Wa)<z 18 lower semicontinuous in (W5, z) for any
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fixed a. c(a, Wy, x) is a supremum of lower semicontinuous functions, and therefore lower
semicontinuous in (Wa, z) (Yeh, 2000, p. 274). c(a, Wa, ) is also clearly nondecreasing in

x.

Proof of Result: From the lower semicontinuity of B(W, () and the continuous map-
ping theorem, it follows that min (BG(I//V\, ﬁ),Be(W, Q)) 2 B.(W,Q). Similarly, for any
(Wg, 53) L. (Ws, x), the continuous mapping theorem implies that

min(c(oz,ﬁ@,f),c(a, Wy, 2)) L c(o, Wy, ). Then

P (Z,ff > c(a, Wa, B.(W, Q) /T) (46)
< ]P(Aeff > min (c (a, W, w) , (47)
. (m min(B, (W, ). B,(W. ﬁ))) )) (48)
— P (Ae*ff > c (a, W, w)) (49)
— (50)

Now we prove the second part of the Lemma. We first prove a bound for the critical
values. Let F', 1( )( «) the upper a point of a non-central x? with d degrees of freedom and
d

noncentrality parameter z. For any « € [0, 1]

(o, Wa, z) (\/m% 2<0 (), F 1<o>/2( @), By <0>/K( )>+f)

Let X; ~ N(0,1) iid., i = 1,2.., K, and let ¢ € A where A = {c ¢ RE | S} ¢ =

1, ¢ >0, Vi}.From Szekely and Bakirov (2003) Z € R, that
infoes P, X2 < &) = P(x%/n(#) < #), where the function n(i) is integer, non-
decreasing, bounded by K and equal to 1 whenever & > 1.536. Let Q = S_0 | (X, + b;)?

a quadratic form in normal random variables and write Zfil c;b? = p*. From the triangle
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inequality

K K
P[Q>$]:P[ZQ‘(X@'+(%)2>$] <P ZCinjL,u >

=1

Whenever z > p? then P[Q > z|<P [Xfl(ml)/n(xl) > xl(,uz,x)] , where 2, (p2,2) = (212 —p)2.
Moreover, this bound is increasing in p? whenever > pu?. Let 2* as above. Then xy(z, z*) =

max (Fx 2(0) (@), F_( j2(0), s Fa 1( (@ )) Therefore, for pu? <z

1

PQ > 2] < B[ oy /nle1) > 1 (2,27)] < a

Now assume that Be(/W, Q) is bounded in probability. Then c¢(a, W, BE(W, (AZ)) is bounded

above in probability by some ¢*. Then

min [P (Feff>c(a Wa, B.(W ﬁ)/f))) ( Lt >c*)] LP(Fy > ) (51)

But then by the triangle inequality

P(Fp>cx) 2P| > e+ (52)

where ¢; are the eigenvalues of W5 and X; are iid standard normal. The right-hand side in

(52) clearly converges to 1 as u? — oo, proving the second part of the Lemma.

SUPPLEMENTARY MATERIALS

e [A Robust Test for Weak Instruments: Supplementary Materials.]. Computational
details and additional results. (PDF)

e [Files201200717.zip] MATLAB and STATA code to compute figures, tables and critical
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values. (Zip file)
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