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Abstract
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1 Introduction

Filtering is a statistical tool that recovers unobservable state variables using measurements
that are observed with "noise". This technique has been the subject of considerable research
interest during past decades due to the wide variety of applications in science and engineering
which include satellite navigation systems, tumor identification, weather forecasting. Kalman
(1960) proposed a well known solution to the linear filtering problem, the Kalman filter, that
computes the estimates of the state of a system, given the set of observations available. It
has been applied to problems in economics and finance where agents make decisions based on
"noisy" information. Generalizations of the Kalman filter, commonly referred to as nonlinear
filters, allow state variables to have a nonlinear relation with measurements or previous states;
however, a complication occurs in this case, since the most common solutions for the linear
filtering problem are not valid.

In this paper, I propose a nonlinear filtering method to estimate latent vector autorrecgressive
(VAR) processes based on high order Taylor approximations. The method can be applied for
both state and parameter inference, using standard Quasi-maximum likelihood techniques as in
White (1982) and Bollerslev and Wooldridge (1992). Finally, to test the accuracy of the filter,
I implement the filtering method with three different nonlinear models that have been studied
in the Finance and Economics literature.

The first application is the Stochastic Volatility model by Andersen and Sørensen (1996),
Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys
(2003) and Broto and Ruiz (2004). I first study state and parameter estimation for the standard
stochastic volatility model with simulated data. My findings suggest that the filtering method
with Taylor series approximations is an alternative approach for both state and parameter
inference. Finally, I estimate the parameters of an endowment process with stochastic volatility
using vintage series of monthly consumption growth for US data and find evidence of stochastic
volatility. Moreover, my results are comparable with the recent findings by Bidder and Smith
(2011) and Ludvigson (2012) in that suggest that the stochastic volatility model is a good
representation for consumption growth, as in the long-run risks literature (Bansal and Yaron
(2004)).

In the second application, I analyze a nonlinear latent vector autoregressive (VAR) process
studied in Brandt and Kang (2004) (BK hereafter) and recently used by Boguth, Carlson, Fisher,
and Simutin (2011) in the conditional asset pricing literature. BK model the conditional mean
and volatility of stock returns as a two dimensional latent VAR process. This approach has
several advantages it guarantees positive risk premia and volatilities; eliminates the reliance of
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arbitrary conditioning variables for the construction of conditional moments and allows to study
the contemporaneous and intertemporal relationships between expected returns and risk. I find
fourth, the VAR representation captures different models.1.

The last application is a stochastic general equilibrium model, which is particularly inter-
esting as it shows that perturbation techniques that have been previously used to solve general
equilibrium models2 can be directly combined with nonlinear filtering for state and parameter es-
timation. Moreover, the filter with Taylor approximations may be another feasible approach for
parameter inference of this type of models since a quasi-likelihood function can be constructed,
avoiding Monte Carlo simulation procedures.

As for the nonlinear filtering literature, two widely used algorithms have been successfully
applied: the Extended Kalman filter (Jazwinski (1970)) and the Unscented Kalman filter (Julier
and Uhlmann (1997)). These approaches rely on first and second order approximations of the
functions that characterize the nonlinear data generating process; however, if nonlinearities are
significant enough, these filters do not provide efficient estimates and a number of biases arise.3

This paper extends these approaches by allowing an arbitrary order of approximation. The
filter is based on the multivariate Taylor series expansions recently used in Savits (2006) and
Garlappi and Skoulakis (2010) in two ways: first, for the computation of higher order derivatives
of functions and second for the computation of higher order moments of normally distributed
random variables. The nonlinear filtering technique that I propose overcomes most of the
difficulties documented before in the filtering literature for a number of reasons: first, it allows for
arbitrary nonlinearities in the data generating process; second, the accuracy level is exogenous
and chosen by the researcher; third, the filtering calculations are potentially as efficient as the
standard Kalman Filter since only function evaluations are required to calculate the recursions;
and fourth, the precision of the filtered states increases as the degree of approximation increases.
From an econometric point of view, the filters based on Taylor series approximations can be
applied for inference purposes, since a quasi-likelihood function can be constructed from the
filtering recursions, White (1982), and robust standard errors can be computed according to the
method of Bollerslev and Wooldridge (1992).

The nonlinear filtering technique based on Taylor series can be applied in a number of
applications in Finance and Economics such as stochastic volatility estimation, predictability

1The models nests representations such as the Fama and French (1988) and Lamoureux and Zhou (1996) permanent
and temporary components; moreover, the dynamics of the logarithm of the conditional volatility nests different
model specifications for the stochastic volatility models such as the proposed by Andersen and Sørensen (1996), Kim,
Shephard, and Chib (1998), Jacquier, Polson, and Rossi (2004) and Jacquier, Johannes, and Polson (2007)

2See Judd (1998) and Schmitt-Grohe and Uribe (2004).
3Fernández-Villaverde and Rubio-Ramírez (2007) uncovers significant biases that arise from first and second order

approximations to the functions that characterize the system.
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of stock returns, fixed income instruments and structural estimation among others. My Monte
Carlo experiments indicate that the Taylor series filter outperforms the unscented Kalman
Filter and the extended Kalman filter. Based on different model representations, I investigate
the accuracy of the filter as well as the finite sample performance of parameter estimates and
find evidence that the Taylor Series filter us asymptotically unbiased. Through my experimental
study I find that the filter proposed in this paper is statistically consistent, in the sense that, as
the number of observations increases, the parameter estimate converges to the true parameter
value.

A number of applications involve nonlinear VAR processes. These nonlinearities complicate
the filtering process as well as the parameter inference procedures since the Kalman filter is not
an optimal solution anymore. Consequently, different lines of research have emerged. One line
of research is based on the so called deterministic filtering and uses deterministic recursions to
compute the mean and variance of the state variables given the observed information. The first
solution in this line is the Extended Kalman Filter (EKF) which consists of approximating the
nonlinear state space with linear functions. As a result, the standard Kalman filter can be used
for its estimation. Unfortunately, this approach suffers from the approximation error incurred
by linearization and from the inaccuracy incurred by the fact that the posterior estimates of
the states are non-normal as documented by Fernández-Villaverde and Rubio-Ramírez (2007).
Julier and Uhlmann (1997) propose the Unscented Kalman Filter (UKF) to approximate the
posterior density by considering a deterministically chosen set of points instead of just the
conditional mean of the state. The UKF has been proven to be a powerful and efficient tool
for nonlinear filtering problems in Finance and Economics. Although the UKF is accurate up
to a second order for any nonlinearity, Fernández-Villaverde and Rubio-Ramírez (2007) find
evidence that the inaccuracy cannot be fully solved. A recent extension of this approach is the
Smolyak Kalman filter, proposed by Winschel and Krätzig (2010), which is an extension of the
standard UKF based on Smolyak quadratures.

The second line of research for nonlinear filtering is based on Monte Carlo techniques. These
filtering techniques are called particle filtering techniques and are based on Monte Carlo simu-
lation with sequential importance sampling. The overall goal is to directly implement optimal
Bayesian estimation by recursively approximating the complete posterior state density through
simulation methods (Pitt and Shephard (1999) and Crisan and Rozovskii (2011)). The current
approach to the evaluation of the likelihood of nonlinear state space models is dominated by
particle filters and its extensions described in Doucet, De Freitas, and Gordon (2001). The
filters with Taylor series may be an alternative approach for state estimation.

The approach proposed in this paper falls into the deterministic filtering literature and
extends the current techniques for nonlinear filtering. It can be considered as a higher order
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efficient filtering technique that overcomes a number of difficulties that have been previously
documented before for a number of reasons, first, allows arbitrary nonlinearities; second, the
accuracy level is exogenous and chosen by the researcher; third, the filtering calculations are as
efficient as the standard Kalman Filter; finally, the filter can be jointly used for parameter and
state inference.

A closely related paper is Tanizaki and Mariano (1996), in which the Taylor series approxi-
mations in filtering are discussed as well as the biases that arise while taking the first and second
order approximations; moreover, the use of Monte Carlo simulations is proposed to avoid numer-
ical integration via Taylor series. My paper formalizes the use of Taylor series approximations of
any order in deterministic filtering and proposes the use of recursive formulas for the calculation
of the integrals involved in the filtering recursions. The biases that arise while taking first and
second order approximations disappear as the order of approximation of the nonlinear functions
increases or if the moments used for the calculation have a closed form expression.

The paper is structured as follows. Section 2 describes the general filtering problem, followed
by Section 3 that describes the filtering techniques with Gaussian approximations. Section 4
describes the filtering via Taylor series and section 5 describes the Quasi-Maximum Likelihood
approach for parameter estimation in filtering. In Section 6 three different applications are
presented as well as the description of data, results and empirical findings. Finally, I conclude
in Section 7.

2 Non-Linear Filtering
State-space models are mathematical tools that are commonly used to represent dynamic sys-
tems that involve unobserved state variables.4 A state space representation is characterized
by a state transition and a state measurement model. The state transition reflects the time
evolution of the state variables, whereas the state measurement relates the unobserved state
vector and the observed variables. Let xt denote an n−dimensional vector that represents the
state of the system at time t and yt is a p−dimensional vector of observables. The states of the
system follow a first order Markov process and the observations are assumed to be conditionally
independent given the states. The state space model is characterized by the state transition
and state measurement densities, denoted by p(xt|xt−1) and p(yt|xt), respectively.

A number of applications characterize the state transition and measurement densities through
4See Hamilton (1994) , Kim and Nelson (1999) and Crisan and Rozovskii (2011) for more details .
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the so called transition and measurement equations, which are expressed as follows

yt = h(xt) + vt (1)

xt+1 = g(xt) + εt+1 (2)

where vt and εt are p−dimensional and n−dimensional distributed noise vectors with variance-
covariance matrices R and Q, respectively. The mappings h and g represent the measurement
and deterministic process models.

To complete the specification of the model, it is assumed that the initial state of the sys-
tem, x0 has a known prior distribution, denoted by p(x0). The optimal non-linear filtering
problem is to find the distribution of the state vector, xt, given the set of observations available
y1...yt. The posterior density of the states conditional on the history of observations, denoted by
p(x0, x1, ..., xt|y1, ..., yt), constitutes the complete solution to the filtering problem. For tractabil-
ity purposes, it is of interest to model the marginal distribution, or marginal density, denoted
by p(xt|y1, ..., yt). If h and g are linear and vt and εt are normally distributed then the solution
to the filtering problem, p(xt|y1, ..., yt), is a Gaussian density with mean and variance that are
constructed recursively according to the standard Kalman filter.5

3 Filtering based on Taylor Series Expansions
A number of solutions have been proposed to solve the non-linear filtering problem. The ex-
tended Kalman filter (EKF) linearizes the state space equations and then applies the Kalman
(1960) filter. An improvement is the deterministic unscented Kalman filter (UKF) proposed by
Julier and Uhlmann (1997).

The UKF relies on the idea that approximating the moments of a transformed random
variables is simpler than approximating its density function. The unscented filter approximates
the first two moments needed for the Kalman update. The approximation is based on quadrature
techniques where the number of grid points is taken to be 2d + 1, where d is the dimension of
the integrand. As Winschel and Krätzig (2010) emphasizes, the UKF is an attempt to solve the
curse of dimensionality; however, the filter generates another curse in terms of approximation
errors. As the UKF raises the number of points only linearly, the effect is that accordingly the
accuracy of the numerical integration decreases with the dimensionality and non-linearity of the
integrands. Therefore, the UKF’s error of the likelihood approximation comes from restricting
the approximation to two moments and their ad hoc approximation. The unscented filter, is

5See Kalman (1960).
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therefore, restricted to a low polynomial exactness and a small number of states.

The filter based on Taylor series expansions avoids the ad-hoc moment approximation and
instead uses exact moment calculations or a level of approximation exogenously chosen by
the researcher. The moments are then updated in the usual way by the Kalman gain in the
filtering step. An advantage of this procedure compared to other deterministic filters is that
the approximation level can be chosen according to the problem at hand and that the filter is
also useful for other than normally distributed shocks. Finally, the computational efficiency of
the filter is comparable with standard deterministic filters such as the EKF or UKF.

The notation N (z;µ,Σ) is a shorthand for the density of a multivariate normal distribution
with argument z, mean µ, and covariance Σ. As in the UKF and EKF, I assume that the initial
state density is normal with mean x0 and covariance matrix P0. I also assume that the densities
involved in the filtering steps are Gaussian. In this case, the previous-posterior density is

p (xt |y1,t ) = N
(
xt;xt|t , Pt|t

)
;

the prior density
p (xt+1 |y1:t ) = N

(
xt+1;xt+1|t , Pt+1|t

)
is characterized by the first two moments of Equation (2), which are given by

xt+1|t = E [g (xt) |y1,t ] , (3)

Pt+1|t = V ar [g (xt) |y1,t ] +Q. (4)

Similarly, the measurement density, defined by the observation equation in 1, is Gaussian,

p (yt+1 |y1:t ) = N
(
yt; yt+1|t , P

yy
t+1|t

)
,

with mean
yt+1|t = E [h (xt+1) |y1,t ] (5)

and variance-covariance matrix

P yyt+1|t = V ar [h (xt+1) |y1,t ] +R, (6)

where R is the covariance matrix of the measurement shocks. Moreover, the covariance between
the observed and unobserved variables is represented by

P xyt+1|t = Cov [xt+1, h (xt+1) |y1,t ] . (7)
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The recursion is closed by the filtering step and the posterior density is obtained according to
the usual Kalman update, represented by the following set of recursive equations6:

p (xt+1 |y1:t+1 ) = N
(
xt+1;xt+1|t+1 , Pt+1|t+1

)
, (8)

Kt+1 = P xyt+1|t

(
P yyt+1|t

)−1
,

xt+1|t+1 = xt+1|t +Kt+1
(
yt+1 − yt+1|t

)
,

Pt+1|t+1 = Pt+1|t −Kt+1P
yy
t+1|tKt+1.

The previous filtering recursions rely on the calculations of the moments in Eqs. (3) - (7),
which are expected values of potentially non-linear transformations of random variables which
may not have a closed form solution. If the moments have a closed form expression, then the
filtering recursions are as computationally efficient as the standard Kalman filter, since only
function evaluations are required. For a number of problems, the moments involved in the
Kalman filter recursions have a closed form 7; however, numerical approximations are required
if they do not.

A natural approach consists of approximating the observation and transition equations with
Taylor series expansions; consequently, the moments of the observation and transition equations
involved are calculated with the expected values of its Taylor approximations. The numerical
integration problem is solved by calculating the derivatives of the observation and transition
equations as well as the joint moments of normally distributed random vectors. The variance-
covariance matrices as well as the moments of the normally distributed vectors are calculated
based on a set of efficient recursions recently proposed in Savits (2006) that have been applied in
Finance by Garlappi and Skoulakis (2010) and Garlappi and Skoulakis (2011). One advantage
of this procedure is that the order of approximation is exogenous and can be arbitrarily high.

A detailed description of the calculation of moments via Taylor series approximations is
provided in the following section.

4 Taylor Series Approximations
Let y = f (x) denote a smooth function, where f : RN −→ R, and let µ denote anN−dimensional
constant vector.8 Let q = (q1, ..., qN ) denote a vector of nonnegative integers, |q| =

∑N
n=1 qn,

6For a detailed description of the standard Kalman filter, please see the appendix.
7The analytical tractability and efficiency of closed form expressions has not been used extensively in the filtering

literature; an exception is Ito and Xiong (2000) and proposes the use of Gaussian densities for non-linear filtering.
8I will follow the convenient tensor notation from Savits (2006) and Garlappi and Skoulakis (2010).
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q! =
∏N
n=1 (qn!) , and fq(µ) denote the partial derivative of order q of the function f(µ) evalu-

ated at µ i.e.,

fq (µ) = ∂q1+...+qN f

∂xq1
1 ...∂x

qN
N

(µ) . (9)

The following theorem states preamble of the Taylor series approximations

Theorem 4.1 Let U ⊂ RN be an open subset, x ∈ U, µ ∈ RN , so that tx + (1− t)µ ∈ U for
all t ∈ [0, 1] . Assume f : U −→ R is (M + 1)−times continuously differentiable. Then, there is
a λ ∈ [0, 1] , so that

f (x) =
∑

{q:|q|≤M}

1
q!fq (µ)

N∏
n=1

(xn − µn)qn +
∑

|q|=M+1

1
q!fq (ζ)

N∏
n=1

(xn − µn)qn ,

where ζ = λx+ (1− λ)µ.

Remark An immediate corollary of Theorem 4.1 is the generic M -th order Taylor approxima-
tion of f centered at µ, which is defined as

f(x) '
∑

{q:|q|≤M}

1
q!fq (µ)

N∏
n=1

(xn − µn)qn , (10)

Now, suppose that x ∼ N (µ,Σ) and we are interested in calculating the expected value of
f (x). From Eq. (10) we can approximate the expected value as

E [f (x)] '
∑

{q:|q|≤M}

1
q!fq (µ)E

[
N∏
n=1

(xn − µn)qn
]
. (11)

Intuitively, Equation (11) provides an approximation for the expected value of a transformation
of a normally distributed random vector which is based on two separate elements: theM− order
derivatives of the function f and the cross moments of a normally distributed random vector. In
most of the applications, the derivatives of the function f have an analytical expression and can
be calculated explicitly. As for the moment calculation, Savits (2006) provides efficient recur-
sions based on Faà di Bruno’s formula to compute the joint moments of a normally distributed
random vector. This recursive formulation is summarized in Proposition 4.2.

4.1 Efficient computation of the moments of a multivariate nor-
mal distribution
Let X = (x1, x2, ..., xN ) denote a multivariate normal random vector with zero-mean vector
and covariance matrix Σ, where the component i, j denotes the covariance between the random
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variables xi and xj equal to σij . Let µ(q1,...,qN ) be its (q1, ..., qN )- moment, where q1, ..., qN are
nonnegative integers, i.e. µ(q1,...,qN ) = E[xq1

1 ...x
qN
N ]. Then, from Theorem 5.1 in Savits (2006),

we have the following recursive relation between the multivariate moments of X.

Proposition 4.2 Set µ(0,...,0) = 1. Then, for all (q1, ..., qN ) ≥ 0N and 1 ≤ j ≤ N, we have

µ(q1,...,qN )+ej ≡ E
[
xq1

1 ...x
qj+1
j ...xqNN

]
=

N∑
k=1

σjkqkµ(q1,...,qN )−ek , (12)

where ej is the N -dimensional unit vector with j − th component equal to 1 and all the other
components equal to zero.

Proof See Savits (2006).

4.2 Efficient Calculation of Variance-Covariance matrices
To calculate the variances and covariances involved in the Kalman filter recursions, I approxi-
mate the square and the product of a transformed random variable with its Taylor series around
its mean. 9 Based on these approximations, all the expected values involved in the computation
of variances and covariances are calculated.

The variance of any random variable requires the calculation of its first two moments. Fol-
lowing the same intuition as Equation (11), the second moment of f , E

[
f2] is calculated based

on its Taylor Series expansions, i.e.

E
[
f2 (x)

]
≈

∑
{q:|q|≤M}

1
q!
(
f2
)

q
(µ)E

[
N∏
n=1

(xn − µn)qn
]

(13)

where
(
f2)

q (µ) denotes the partial derivative of order q of the square of the function f evaluated
at µ.

Calculating the derivatives of f2 may be quite cumbersome since it involves the derivative of
the composition of two functions; however, Proposition 4.3 provides a general recursive algorithm
to calculate the derivative of the square of a function based on the Faà di Bruno formula for
the derivative of the composition of two functions. These expressions will be used to calculate
the variances in Eqs. (4) and (6) used in the Kalman Filter update.

9The choice of the mean vector, µ, as a center of expansion of the Taylor series is convenient for two rea-
sons: first, all the calculations that involve derivatives are independent of the expectation operator; and second,
E[
∏N

n=1 (xn − µn)qn ] = 0, for all vectors q such that
∑N

n=1 qn is an odd number. In any case, the results will still
valid if the chosen center of expansion is any other constant vector. If we are dealing with conditional expectations,
the results will still be valid; moreover, any measurable random vector can be chosen as a center of expansion.
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Proposition 4.3 Let f : RN −→ R be an (M + 1)− times continuously differentiable function,
then the derivatives of g (x) = f (x)2 can be obtained from the following vector recursion

g0 (x) = f (x)2 (14)

gq+ej (x) =
∑

{`∈NN0 :0N≤`≤q}
2×

(
q
`

)
fq+ej−` (x) f` (x)

Proof See the Appendix.

As a result, the variance is computed as the difference between the second moment of the
function and the squared approximation of the first moment, that is

V ar [f (x)] = E
[
f2 (x)

]
− E2 [f (x)] .

A counterpart for Proposition 4.3 that allows for the calculation of covariances is given by
Proposition 4.4; in which the covariances involved in the filtering recursions are calculated via
Taylor series of the product of two functions. As in the variance, the idea is to approximate the
expected value of the product of two functions using the derivatives evaluated in the vector of
means and the joint moments of a normally distributed random vector, as in Eq. (13) , that is

E [f1 (x) f2 (x)] ≈
∑

{q:|q|≤M}

1
q! (f1 · f2)q (µ)E

[
N∏
n=1

(xn − µn)qn
]
. (15)

where (f1 · f2)q (µ) denotes the partial derivative of order q of the product of the functions f1

and f2 evaluated at the constant point µ.

Proposition 4.4 Let f1, f2 : RN −→ R be (M+1)− times continuously differentiable functions.
Let g (x) = f1 (x) f2 (x),then the derivatives of g (x) , are given by

g0 (x) = f1 (x) f2 (x) (16)

gq+ej (x) =
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
f1,q+ej−` (x) f2,` (x) ,

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
f2,q+ej−` (x) f1,` (x) .

Proof See the Appendix.

Now, based the covariance between the two transformations is calculated as

cov [f1 (x) , f2 (x)] = E [f1 (x) f2 (x)]− E [f1 (x)]E [f2 (x)] .
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Finally, the covariance matrix involved in the Kalman filter step in Equation (7), can be ob-
tained through Proposition 4.4. However, a convenient shortcut is obtained via Stein’s Lemma,
the only requirement being the integrability of the derivative of a function f .

Lemma 4.5 (Stein’s Lemma)For any function f (x1, ..., xN ) such that ∂f /∂xi exists almost ev-

erywhere and E
∣∣∣ ∂∂xi f (X)

∣∣∣ <∞, i = 1, ..., n. Let ∇f (X) =
(
∂f
∂x1

, . . . , ∂f∂xn

)T
. Then the following

identity holds
cov (X, f (X)) = Σ× E [∇f (X)] , (17)

more specifically

cov (x1, f (x1, ..., xN )) =
N∑
i=1

cov (x1, xi)× E
[
∂

∂xi
f (x1, ..., xN )

]
. (18)

Proof See the Appendix.

Recall that ∇f (x) =
[
∂f
∂x1

, ..., ∂f
∂xN

]>
, represents the vector of partial derivatives of the

function f. In this case, if the function f is (M + 1)−times continuously differentiable, then
the power series of the i− th component can be calculated directly and is represented by

∂f

∂xi
'

∑
{q:0<|q|≤M}

1
q!fq (µ)× qi (xi − µi)qi−1 ×

N∏
n=1
n 6=i

(xn − µn)qn .

5 Quasi-Maximum Likelihood Parameter Estimation
The filters based on Gaussian approximations have been applied recently for state estimation
as well as for inference purposes. 10 In this section, I introduce a quasi-maximum likelihood
method for parameter estimation of nonlinear state space representations based on Bollerslev
and Wooldridge (1992).

5.1 Quasi-Likelihood Function
For each time observation, a conditional mean, yt+1|t , and conditional covariance, P yyt+1|t , is
calculated through the Extended, Unscented or Higher order Taylor series approach. A quasi log-
likelihood function is constructed assuming that the observation, yt+1, is normally distributed

10See Christoffersen, Jacobs, Karoui, and Mimouni (2012), van Binsbergen and Koijen (2011), Campbell, Sunderam,
and Viceira (2011) and Calvet, Fisher, and Wu (2010) have used the Unscented Kalman Filter in different applications
in Financial Economics.

12



with mean, yt+1|t , and volatility, P yyt+1|t . Let θ denote the vector of parameters that are used
to perform the Kalman Filter. The log-likelihood for each observation, denoted by lt (θ), is
calculated as

lt (θ) = −p2 log (2π)− 1
2 log

(
P yyt+1|t

)
− 1

2

(
yt+1 − yt+1|t

)2

P yyt+1|t
. (19)

Finally, we choose the parameter values θ, that maximize

L (θ) = ΣT
t=1lt (θ) . (20)

Gallant and White (1988) develop a statistical theory for misspecified models, known as Quasi
Maximum Likelihood (QML) that can be applied to guarantee that the QML function, (19), is
well defined. Moreover, Bollerslev and Wooldridge (1992) show that a Gaussian QML estimator
is consistent, under a set of regularity conditions. More specifically, Bollerslev and Wooldridge
(1992) show that the true but unknown vector of parameters is the global maximizer of (20) if
the conditions following conditions hold:

E [vt+1 |y1:t ] = 0

V ar [vt+1 |y1:t ] = R.

As for the calculation of asymptotic standard errors, Gallant and White (1988) show that
under certain regularity conditions, the covariance matrix of the QML estimator has a closed
form expression. 11

6 Applications
In this section, I test and compare the performance of my nonlinear filtering methodology to that
of the Extended Kalman Filter, the Unscented Kalman filter and the Gaussian Kalman filter
for three different model specifications that have been proposed in Financial Economics. The
first application is the Stochastic Volatility Model by Andersen and Sørensen (1996), Andersen,
Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2003) and
Broto and Ruiz (2004). The second application is a return representation that was firstly
proposed by Brandt and Kang (2004) and recently used by Boguth, Carlson, Fisher, and Simutin
(2011) in the conditional asset pricing literature. The third representation is a simple version of
the Dynamic Stochastic General Equilibrium model studied by Schmitt-Grohe and Uribe (2004)
and Flury and Shephard (2011).

11See the Appendix for details.
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6.1 Stochastic Volatility Models
The standard stationary stochastic volatility12 model in discrete time is represented by

yt = ηt · σt (21)

log σ2
t = d+ φ log σ2

t−1 + εt, εt ∼ N
(
0, σ̃2

ε

)
,

where yt is the return observed at time t and σt is the corresponding volatility; d is a scale
parameter for the volatility process, ηt is a white noise process with unit variance that represents
the innovations in the level or returns. The disturbance of the volatility equation, εt is assumed
to be a Gaussian white noise process; finally |φ| is considered as a measure of persistence of
shocks to the volatility. The variance of the log-volatility process, σ̃2

ε , measures the uncertainty
of future volatility. The log normality specification for the volatility is consistent with Andersen,
Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2003) that
show that the log-volatility process can be well approximated by a Normal distribution and with
Taylor (2008) who proposes to model the logarithm of volatility as an AR(1) process. When
φ is close to one and σ̃2

ε is close to zero then the evolution of volatility over time is very smooth;
however, in the limit, if φ = 1 and σ̃2

ε = 0, the volatility is constant over time, and consequently,
the returns are homoscedastic. As noted by Broto and Ruiz (2004), if σ̃2

ε = 0 the model cannot
be identified.

6.1.1 State Space Representation and Implementation

An alternative representation of Equation (21) can be obtained by re-parameterizing the stochas-
tic volatility process as

yt = σ exp (st) ηt (22)

st = φst−1 + εt, εt ∼ N
(
0, σ2

ε

)
.

Clearly, the state variables are xt = [st, ηt]> , h (xt) = h (st, ηt) = σ exp (st) ηt, the random noise
of the observation equation, vt, is identically zero and as a result its variance is identically zero
(R ≡ 0).13 Furthermore, we can treat ηt as a state variable that only depends on the current
shock and does not depend on its lagged values; as a result we have a more flexible framework
that potentially handles correlated shocks between the observation and transition equations; in

12See Ghysels, Harvey, and Renault (1996) and Shephard (2005) for a comprehensive review.
13This is a unique feature of the Gaussian filters; most of the simulation based filters, such as the Particle filter,

require that all the variances of the transition and measurement equations should be positive semi-definite.
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other words,  st

ηt

 =

 φ 0
0 0

 st−1

ηt−1

+

 εt

ηt

 ,
 εt

ηt

 ∼ N (0, Q)

Q =

 σ2
ε ρ

ρ 1

 ,
where ρ ≡ corr (st, ηt) . Two transition equations are necessary for this representation; the first
equation is given in (22) while the second transition equation characterizes the random shock
that characterizes the observation equation. Although all the moments involved the filtering
algorithms exist and have a closed form expression, I approximate the expected values and
covariances involved in the filtering calculations with Taylor series to analyze the precision of
the method for state and parameter estimation. 14

According to Section 2, we need to approximate the first two moments of the returns with
stochastic volatility, that is

yt+1|t = E [yt+1 |Yt ] = E [σ exp (st+1) ηt+1 |Yt ]

and

P yyt+1|t = var [yt+1 |Yt ] = E
[
σ2 exp (2st+1) η2

t+1 |Yt
]
− E2 [σ exp (st+1) ηt+1 |Yt ]

= E
[
σ2 exp (2st+1) η2

t+1 |Yt
]
− y2

t+1|t .

Finally, the computation of the Kalman gain involves calculation of the covariances between the
observation and transition equations, that is

P xyt+1|t = cov

 st+1, yt+1 |Yt
ηt+1, yt+1 |Yt

 = Pt+1|t × E

 σ exp (st+1) ηt+1 |Yt
σ exp (st+1) |Yt

 ,
where the last equality comes from applying the multivariate version of Stein’s lemma shown in
Section 4.15

14See Broto and Ruiz (2004) for an extensive review of stochastic volatility model estimation.
15The Appendix contains closed form expressions of the expected values, variances and covariances involved in the

Kalman Filter recursions of the Stochastic Volatility Model.
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6.1.2 Monte Carlo Simulation Results

In this section I conduct a Monte Carlo study to test for the accuracy of the filters with Taylor
approximations in two different ways. The first exercise consists testing the accuracy of the
state estimates and is explained as follows. A time series of 1000 observations is generated
using the model in (22), assuming φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5.16 Conditional on
the simulated noisy observations, yt, the log-volatility processes, st, was filtered using different
orders of approximation, M . For simplicity I will denote by TKF-M the filter with an M − th
order Taylor series approximation.

The experiment was repeated 250 times with a random re-initialization for each run. The
EKF and UKF were included for comparison purposes. The UKF parameters were set to
α = 1, β = 0 and κ = 2. These parameters are optimal for the scalar case. Finally, the
parameter estimates of the filter that uses closed form expressions of the conditional moments
is included for comparison purposes. I will refer to this filter as the Gaussian Filter (GF
hereafter).17.

[ I n s e r t T a b l e 1 a b o u t h e r e ]

Table 1 summarizes the performance of the different filters. The table shows the means
and standard deviations of the mean-square-error (MSE) of the state estimates. The first two
columns contain statistics of the mean squared errors (MSE) of the simulated log-volatility
versus its filtered estimate. The minimum MSE is achieved by the filter with fourth and fifth
order of approximation. In this case, the filters with 10-th and 11-th order of approximation
and the Gaussian filters provide the same MSE statistics. The MSE for two consecutive orders
of approximation (even and odd) are exactly the same since the joint moments of an odd order
of a normally distributed random vector are equal to zero. Although the Unscented Kalman
Filter is commonly known as a second order filter, my simulation results show evidence that the
MSE results of the second order filter are slightly different from the statistics obtained from the
Unscented Kalman Filter.

[ I n s e r t F i g u r e 1 a b o u t h e r e ]
16These parameter values have been extensively used in Broto and Ruiz (2004) as well as in empirical applications

of daily returns.
17Ito and Xiong (2000) propose the name of Gaussian filters to the filtering methods that use Gaussian densities to

approximate the posterior densities of the filtering problem.
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Figure 1 compares the state estimates of the log-volatility process generated from a single
run using different filters. The tests were conducted using all the orders of approximation, but
only reported the fifth order for easiness of exposition. The first panel compares the simulated
series with the filtered estimates based on the fifth order approximation and the Gaussian filters;
the difference between both filtered series is almost negligible. The second panel contains the
simulated series with the the filtered series based on the EKF and UKF. For the first 400
observations, all the filters perform similarly; however, for the remaining set of observations,
the UKF and EKF provide more volatile state estimates compared to the other filters. In
general, the UKF provides more volatile state estimates than higher order filters.

[ I n s e r t F i g u r e 2 a b o u t h e r e ]

As with most nonlinear models, it is difficult , if not impossible, to prove that the parameters
of the model are uniquely identified. In order to analyze the uniqueness of the QMLE estimates,
I implemented the following procedure. For a set of parameter values, a path of noisy returns
was simulated and a quasi-likelihood function was constructed based on the simulated path. An
initial identification exercise was performed by calculating the quasi-likelihood function in the
set of parameters used for the simulation and ranging independently each parameter φ, σε, σ
and ρ. The results are shown in Figure 2; the dashed lines represent the parameter values that
were used to simulate the data. The concavity of the quasi-likelihood function with respect to
each parameter shows evidence that all the parameters are well identified and the maxima are
achieved in parameter values close enough to the ones used to simulate the data.

An alternative way to analyze the finite sample properties of the QML estimator is via
Monte Carlo simulation. In particular, I repeatedly estimated the model from 250 independent
samples of T = 500 monthly returns with the parameter values used in the previous section
via QML estimation. For different orders of approximation M, the QML function based on
the Taylor series approximation as well as the UKF. Table ?? presents the results. It shows
the true parameter values in the first row and describes the sample mean and variance of
the corresponding parameter estimates in the remaining rows. The average estimates under
the different filtering algorithms are all close to the true parameter values, suggesting that
the estimators via Taylor series are relatively unbiased. The estimates for σ under the EKF,
UKF and the third order approximations are biased. Moreover, the standard deviations of
the QML estimates of the 9-th approximations are similar to the standard errors of the third
order approximation. This effect may be caused by a small sample bias as well as the effect of
numerical errors.
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[ I n s e r t T a b l e ?? a b o u t h e r e ]

6.1.3 Consumption Growth

A standard model for the log of consumption follows a random walk with drift µc and innovation
standard deviation, σ,

∆ ln(Ct+1) = µc + σηt+1

ηt+1 ∼ N (0, 1) .

The previous specification has been analyzed in Tallarini (2000) and Barillas, Hansen, and
Sargent (2009). However, there is evidence of time variation in the conditional deviation of may
macroeconomic series, as documented in Stock and Watson (2002), McConnell and Perez-Quiros
(2000), Fernández-Villaverde and Rubio-Ramírez (2007), Justiniano and Primiceri (2008), Clark
(2009) and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012), among others.

As a result, Bidder and Smith (2011) propose an alternate endowment process that features
stochastic volatility in log-consumption growth, that is the standard stochastic volatility model,
as in (22), that is represented as follows:

∆ ln(Ct+1)− µc = σ exp (st+1) ηt+1, ηt ∼ N (0, 1) (23)

st+1 = φst + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
.

For parameter estimation purposes, I use the monthly vintage series from the Federal Reserve
Bank of Philadelphia to construct the real consumption per capita from January 1959 to March
2012. The "monthly" log-consumption growth data was constructed using the real time data of
real personal consumption expenditures in nondurables and services from the Real-Time Data
Set for Macroeconomists from the Federal Reserve Bank of Philadelphia.18 This "real-time data
set" of macro economic variables was created to update and verify the accuracy of forecasting
models of macro variables and provides snapshots of the macroeconomic data available at any
given date in the past. 19

The summary statistics and time-series are shown in Table 3 and Figure 3.

[ I n s e r t T a b l e 3 a b o u t h e r e ]

[ I n s e r t F i g u r e 3 a b o u t h e r e ]
18http://www.phil.frb.org/research-and-data/real-time-center/real-time-data
19See Croushore and Stark (2001) for details.
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As in the previous sections, the parameter values were estimated using the quasi-likelihood
function constructed based on the Kalman filter with Taylor series approximations of order
M = 1, 3, 5, 7, 9 as well as the gaussian filters. The estimates using the UKF were included,
for comparison purposes. The results are shown in Table 4. In this case, all the parameters
were identified. The parameter estimates using the QML function constructed with an order
of 3 or more have similar values; however, the adjusted standard errors change as the order
of approximation changes. This is due to the fact that the quasi-likelihood function achieves
the same value starting from an order of 5 or more. In general, the magnitude of the standard
errors decreases as the order of approximation increases. Overall, the parameter estimates
have similar values to those found in Bansal and Yaron (2004), Bidder and Smith (2011) and
Ludvigson (2012) with a slightly lower growth rate and higher variance, most likely due to the
longer data series including the recession starting in the last quarter of 2007.

[ I n s e r t T a b l e 4 a b o u t h e r e ]

6.2 Risk-Return Trade-off
Brandt and Kang (2004) introduces a non-linear representation for the return dynamics that
allows for positive risk premium in the context of a latent vector autoregressive (VAR) process
and is presented as follows.

Let yt be the continuously compounded excess returns with time-series dynamics represented
by

yt = µt−1 + σt−1εt with εt ∼ N (0, 1) (24)

where µt−1and σt−1 represent the conditional volatility of the excess returns. In addition, it is
assumed that the conditional mean and volatility are unobservable and that they follow a first
order VAR process in logs: lnµt

ln σt

 = d+A

 lnµt−1

ln σt−1

+ ηt with ηt ∼ N (0,Σ) , (25)
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where

d =

 d1

d2

 , A =

 a11 a12

a21 a22

 and

Σ =

 b11 b12

b21 b22

 with b12 = b21 = ρ
√
b11b22. (26)

The first equation of the VAR in Eq. (25) describes the dynamics of the logarithm of the
conditional mean, and it captures the Fama and French (1988) and Lamoureux and Zhou (1996)
permanent and temporary components, in which the stock prices are governed by a random walk
and a stationary random process, respectively. The second equation of the VAR describes the
dynamics of the logarithm of the conditional volatility; and nests different specifications such
as the proposed by Andersen and Sørensen (1996), Kim, Shephard, and Chib (1998), Jacquier,
Polson, and Rossi (2004) and Jacquier, Johannes, and Polson (2007). This latent VAR approach
allows to study the contemporaneous and intertemporal relationships between expected returns
and risk without relying on predictors; moreover, the contemporaneous relationship between
the conditional mean and volatility can be analyzed.

Following Hamilton (1994), if the VAR is stationary, the unconditional moments for the
mean and volatility are given by

E

 lnµt
ln σt

 = (I −A)−1 d (27)

and

vec

cov
 µt

σt

 = (I − (A⊗A))−1 vec (Σ) (28)

where ⊗ represents the Kronecker product.

The return dynamics presented in Eq. (25) has key elements: the transition matrix A

and the correlation coefficient ρ. The diagonal elements of A capture the persistence of the
conditional moments, and the off diagonal elements reflect the intertemporal feedback between
the conditional volatility and the conditional mean. A general correlation structure is specified;
the conditional mean and volatility are correlated with the return innovations; Corr [εt, ηt] =
[ρµ, ρσ]′ .
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6.2.1 State Space Representation and Implementation

The representation given in Eqs. (24) and (25) defines a state-space model; where the first equa-
tion represents a non-linear measurement or observation equation and the second equation is
the standard linear transition equation. In order to infer about both the parameters of the VAR
and the realizations of the conditional moments from the observed returns, we need to solve a
sequence of filtering problems. Filtering generates the one step ahead forecasts of the latent vari-
ables E [lnµt, ln σt |y1, ..., yt ] and the corresponding forecast variances V ar [lnµt, ln σt |y1, ..., yt ] ,
which in a linear Gaussian state-space model are used to construct the likelihood function. The
nonlinearity of the observation equation makes the problem not standard.

A simpler representation of the state space representation can be obtained by redefining in
state variables in demeaned terms, that is mt = lnµt−E [lnµt] and vt = ln σt−E [ln σt] , so that
µt = µ exp (mt) and σt = σ exp (vt) , where µ = exp (E [lnµt]) and σ = exp (E [ln σt]) . Finally,
let xt = [x1t, x2t, x3t, x4t, x5t]′ = [mt−1, vt−1, εt,mt, vt]′ , then equations (24) and (25) can be
rewritten as:

yt = µ exp (x1t) + σ exp (x2t)x3t, (29)

and
xt = Ãxt−1 + wt with wt ∼ N

(
0, Σ̃

)
, (30)

where

Ã =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 a11 a12

0 0 0 a21 a22


,

and

Σ̃ =



0 0 0 0 0
0 0 0 0 0
0 0 1 ρµ

√
b11 ρσ

√
b22

0 0 ρµ
√
b11 b11 ρ

√
b11b22

0 0 ρσ
√
b22 ρ

√
b11b22 b22


.

where Corr [εt, ηt] = [ρµ, ρσ]′ . All the parameters can be represented into the vector ψ =
[a11, a12, a21, a22, b11, b22, ρ, µ, σ, ρµ, ρσ]′ and the matrix of conditional means and volatilities can
be stacked in the following matrix:

θ = [x0, x1, ..., xT−1]′ .
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According to Section 2, the filtering and estimation problems can be solved via the filtering
method with Taylor series. The first and second moments to be approximated are

yt+1|t = E [yt+1 |Yt ] = µE [exp (x1t+1) |Yt ] + σE [exp (x2t+1)x3t+1 |Yt ] ,

and
P yyt+1|t = V ar [yt+1 |Yt ] = E

[
y2
t+1 |Yt

]
− y2

t+1|t .

Finally, the covariance term involved in the Kalman gain, is calculated as

P xyt+1|t = cov


x1t, yt+1 |Yt
x2t, yt+1 |Yt
x3t, yt+1 |Yt

 = Pt+1|t × E


µ exp (x1t) |Yt

σ exp (x2t)x3t |Yt
σ exp (x2t) |Yt

 ,
from Stein’s Lemma.

6.2.2 Results

As with the stochastic volatility model, it is a big challenge to prove that the parameters of the
model are well identified. To get a sense of the precision of Quasi-Maximum-Likelihood (QML)
estimates, simple identification exercises were perform. The first study compares the value of the
quasi-log likelihood function of the nonlinear state space model under the Taylor series approach
for different orders of approximation as well as the exact approach. The parameters used to
evaluate the quasi log-likelihood functions were obtained from Brandt and Kang (2004). Figure
4 contains the results. The figure contains in the x axis the different orders of approximation
while the y axis contains the values of the quasi-likelihood function.

[ I n s e r t F i g u r e 4 a b o u t h e r e ]

The second exercise consists of simulating a sample path for the stock returns with T = 5000
using the parameter estimates obtained by Brandt and Kang (2004) and a degree of approxi-
mation of M = 10. The likelihood function under each method was evaluated numerically by
fixing all the parameter values but one; all of the other parameter values were the true param-
eter values which were used to simulate the data. The results are shown in Figures 5 ; the
dashed lines represent the unknown parameter values used to generate the data. The figures
present the quasi log-likelihood function as a function of a11, a21, a12 and a22. The concavity
of the quasi-likelihood function with respect to each parameter shows evidence that all the pa-
rameters are well identified and the maxima are achieved in parameter values close enough to
the ones used to simulate the data. For example, the value used to simulate was a11 = 0.8589;
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the QML estimate obtained was 0.9191. It is worth mentioning that the number of simulations
is important; with a small number of observations the correlation coefficient ρ, may not be
identified.

[ I n s e r t F i g u r e 5 a b o u t h e r e ]

To provide more evidence of the precision of these estimation methods, we simulated 500
independent samples of T = 792 monthly returns with parameter values obtained from Brandt
and Kang (2004) and estimated repeatedly the parameters with each of the techniques mentioned
above. Table 1, Panel A presents the parameter estimates obtained by the QML estimation
method. The first column shows the parameter values used to simulate the data and the
remaining columns contain the sampling distribution of the corresponding parameter estimates.
Overall, the parameter estimates show evidence of consistency; however, the small number of
simulations does not allow to check for a more precise assessment of asymptotic results. The
standard deviations for b11, b22, µ and σ are relatively small compared to the overall standard
deviations of the other parameters. As for the correlation coefficients ρ and ρµ; it is interesting to
note that, in general, the parameter estimates of these correlation coefficients are not identified.
20 A common approach to correct for this issue is to add another observation equation or a set
of predictors in the dynamics of the mean and volatility of returns.

6.2.3 Data

I study monthly returns on the value weighted CRSP index in excess of the one month Treasury
bill rate from January 1946 through December 2011 (792 observations). The short rate is the
yield of a one-month Treasury bill. Table 6 presents summary statistics of the data and Figure
3 plots the series.

[ I n s e r t T a b l e 6 a b o u t h e r e ]

6.2.4 Parameter Estimates

Table 7 presents the quasi-maximum likelihood estimates of the latent VAR under the four
Model representations. Under , it is assumed that the innovations of the transition and ob-
servation equation are uncorrelated. The innovations of the conditional mean and volatility
are contemporaneously negative correlated and are statistically significant under both specifi-
cations. (The t-statistics were computed with the asymptotic standard errors.) As a result, we

20The lack of identification of correlation coefficients is a common problem in the standard filtering applications;
see Hamilton (1994) for details.
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strongly reject the hypothesis of lack of contemporaneous relationship between the conditional
mean and the conditional volatility. In addition, the volatility in mean and mean in volatility
are negative and significant. These results are consistent with French, Schwert, and Stambaugh
(1987), Campbell and Hentschel (1992) and Brandt and Kang (2004). Under the first estimation
method a21 is significant and a12 is not, in contrast with the approximation, that reflects no
significance for a12 and a21.

[ I n s e r t T a b l e 7 a b o u t h e r e ]

6.3 A Dynamic Stochastic Equilibrium Model
In this section, I estimate a simple DSGE model. 21 Flury and Shephard (2011) notices that
the particle filters are the only feasible approach to estimating parameters of DSGE models;
however, the filtering and estimation technique that I propose in this paper is another way to
perform estimation.

6.3.1 The Model

There is a representative household maximizing its lifetime utility given by:

E0

[ ∞∑
t=0

βt
C1−η
t

1− η

]
, β ∈ (0, 1) , η > 0 (31)

where Ct is consumption at time t, β is the subjective discount factor and η is the risk aversion
parameter.

There is one single good produced according to

Yt = AtK
α
t , (32)

where Kt is the stock of capital and At is the technology. The stock of capital evolves according
to

Kt+1 = (1− δ)Kt + It,

where It denotes investment and δ is the depreciation rate. The aggregate resource constraint
is

Ct = It + Yt.

21An and Schorfheide (2007) considered Bayesian inference for DSGE models. Fernández-Villaverde and Rubio-
Ramírez (2007) used particle filters to perform parameter inference. Flury and Shephard (2011) provide a Bayesian
based method based on particle filters.
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I assume that
logAt+1 = ρ logAt + εt+1, (33)

where εt ∼ N
(
0, σ2

A

)
. The central planner’s problem is

max
{Ct,Kt+1}∞t=0

E0

[ ∞∑
t=0

βt
C1−η
t

1− η

]
, β ∈ (0, 1) , η > 0 (34)

subject to
Kt+1 + Ct ≤ AtKα

t + (1− δ)Kt

and (32) , for t = 0, 1, ...; K0, A0 given.

The first order conditions implied by (33) , (34) and (32) are

C−ηt = βEt
[
C−ηt+1

(
1− δ + αAt+1K

α−1
t+1

)]
, (35)

Kt+1 = AtK
α
t + (1− δ)Kt − Ct,

logAt+1 = ρ logAt + εt+1.

These equations fully characterize the solution to the optimization problem faced by the central
planner.

The solution to the system in (35) involves finding policy functions g and h such that

Ct = g (Kt, At) Kt+1

logAt+1

 =

 h1 (Kt, At)
h2 (Kt, At)

+ σ

 0
σA

 εt+1

where σ is a perturbation parameter. This system of equilibrium equations does not have
a general analytical solution, and I solved it with a numerical method. The second-order
approximation to these policy functions is obtained via perturbation methods.22 The system is
solved in terms of log-deviations from a non-stochastic steady state. Let

ĉt = log (Ct/Css)

k̂t = log (Kt/Kss)

ât = log (At)

where Css and Kss are the non-stochastic steady state values for Ct and Kt, respectively:
22See Judd (1998) for a detailed explanation of perturbation methods in Economics.
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Css = (Kss)α − δKss,

Kss =
[

αβ

1− β (1− δ)

] 1
1−α

.

For simplicity, let x̂t =
[
k̂t, ât

]′
, denote the log-deviations from the non-stochastic steady

state. The solution of the system will be of the state form

k̂t+1 = hx,1x̂t + 1
2 x̂
′
thxx,1x̂t + 1

2hσσ,1σ
2, (36)

ât+1 = ρât + εt+1,

and
ĉt = gxx̂t + 1

2 x̂
′
tgxx,1x̂t + 1

2gσσσ
2

I rely on the code from Schmitt-Grohe and Uribe (2004) to solve for the unknown derivatives
hx, hxx, hσσ, gx, gxx and gσσ.

6.3.2 State Space representation and Implementation

Following Flury and Shephard (2011), I assume that the observable variable is the detrended
real gross domestic product per capita, ĜDP t

ĜDP t = ŷt + σyε
y
t . (37)

From Equation (32), the log-GDP is given by

ŷt = ât + αk̂t.

Finally, Eqs. (36) and (37) specify a non-linear state space system

ĜDP t = ât + αk̂t + σyε
y
t , (38)

ât+1 = ρât + εt+1,

k̂t+1 = hx,1x̂t + 1
2 x̂
′
thxx,1x̂t + 1

2hσσ,1σ
2

where the last equation can be rewritten as

k̂t+1 = hkk̂t + haât + 1
2
(
hkkk̂

2
t + 2hakâtk̂t + haaâ

2
t

)
+ 1

2hσσ,1σ
2. (39)
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6.3.3 Quasi-Likelihood Function

In order to approximate the likelihood of the model, L (θ), the first and second moments of
equations (37) and (38) are necessary. In this case, the transition equation in (38) is quadratic
in the state variables; for that reason, the second order Taylor series expansion of the transition
equation will coincide with the function value for all values of x, and the Taylor series approach
to evaluate the mean and variance of the transition equation is exact. The mean vector of state
variables,

xt+1|t =
[
E
[
k̂t+1 |Yt

]
E [ât+1 |Yt ]

]′
is computed by applying the second order Taylor series approximations of (39) from Section 4.
Now, since the transition equation is quadratic, its variance requires fourth order polynomials,
as a result, the variance of the transition is computed with a fourth order Taylor series, as

Pt+1|t =

 V art
[
k̂t+1 |Yt

]
covt

[
k̂t+1, ât+1 |Yt

]
covt

[
k̂t+1, ât+1 |Yt

]
V art [ât+1 |Yt ] + σ2

A

 .
The observation equation is linear in the state variables, as a result, its first and second

conditional moments are
yt+1|t = E [yt+1 |Yt ] = [1, α] · xt+1|t

and
P yyt+1|t = [1, α] · Pt+1|t · [1, α]′ + σ2

y .

Finally, the covariance between the observation and transition equation is

P xyt+1|t = Pt+1|t · [1, α]′ .

The task for the econometrician is to carry out inference on θ = (α, β, δ, η, ρ, σA, σy) . The
algorithm to obtain L (θ) works by computing Css and Kss given the first choice of parameter
values, θ(i), and then use perturbation methods to find numerical values for hx, hxx, hσσ, gx, gxx
and gσσ, and then run the Taylor-Kalman filter to obtain L

(
θ(i)
)
.

6.3.4 Results

The task for the econometrician is to carry out inference on θ = (α, β, δ, η, ρ, σz, σy) , where σy
is the standard deviation of the measurement error. I use the model to simulate an economy
with T = 500 and the following parameterization:

β δ α ρ γ σy σε

0.95 0.15 0.30 0.9 3 0.3 0.2
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The quality of the filtering algorithm based on Taylor approximations was tested using
Monte Carlo simulations. A sample path of size T was simulated using the parameter values
described in the previous table. Using an approximation of M = 4, the filtering recursions were
calculated and the state estimates were estimated. 23

The results for the filtered state variables are shown in Figure 7. In this case, I compare
the simulated Log-investments and shocks with the filtered shocks and filtered Log-investment.
The difference between the simulated paths and the filtered ones is almost indistinguishable.

[ I n s e r t F i g u r e 7 a b o u t h e r e ]

As for the parameter estimation part, a basic identification exercise was performed. A sample
path of random shocks was simulated with T = 500 using the previous parameterization. As
in the simulation, the degree of approximation of the Quasi-likelihood function is M = 4. For
each simulation, the likelihood function was evaluated numerically by fixing all the parameter
values but the one showed in the x−axis. The results are shown in Figures 8 and 9.

[ I n s e r t F i g u r e s 8 a n d 9 a b o u t h e r e ]

As reported previously by Flury and Shephard (2011) some of the parameter values are not
well identified, such as the subjective discount factor, β, the depreciation rate,δ, and there
is some bias in the risk aversion parameter. In this case, the risk aversion parameter was
identified, but the value estimated via QML is close to 0.5. All the other parameters, such as
the volatility of shocks, measurements, correlations and α are identified. An alternative way to
achieve identification by included other sets of observables such as investment or noisy measures
of consumption growth. This exercises are left for future work.

7 Conclusions
In this paper, I proposed a new nonlinear filter based on Taylor series approximations. This
filter is able to perform state and parameter estimation when the process and measurement
models are highly nonlinear. My estimation results suggest that filtering methods via the
higher order Taylor Series filter are superior to conventional methods such as the Extended
Kalman Filter or the Unscented Kalman Filter. In terms of computational efficiency, my filter
outperforms the standard particle filter techniques. The filter can be applied directly application

23The choice of M = 4 is due to the second order approximation used to solve the policy function and the fact that
these filtering recursion involved first and second moments.
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in stochastic volatility models, predictive systems and structural estimation among others. My
results suggest that this filter may be a good a approach for a number of problems that involve
nonlinear dynamic modeling in Finance and Economics.
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A Efficient Calculation of derivatives of composite
functions
The efficient computation of partial derivatives relies on the Taylor expansion of a function of
the form f (x) = h (g (x)) , where h : R −→ R, g : RN −→ R, and x = (x1, x2, ..., xN ) denotes
an N−dimensional vector24. The generic M − th order Taylor expansion of f centered at a
constant point 0N is

f (x) '
∑

{q:|q|≤M}

1
q!fq (0N )

N∏
n=1

xqnn (40)

where q = (q1, ..., qN ) is a vector of nonnegative integers, |q| =
∑N
n=1 qn,q! =

∏N
n=1 (qn!) , and

fq (0N ) denotes the partial derivative of order q of the function f (x) evaluated at 0N , i.e.,

fq (0N ) = ∂q1+...+qN f

∂xq1
1 ...∂x

qN
1

(0N ) . (41)

To compute such derivatives, Savits (2006) relies on the recursive formula of Faà di Bruno
(1855, 1857). To present the formula, I will introduce some notation. Let N0 denote the set
of nonnegative integers and let q = (q1, ..., qN ) , where q1, ..., qN are nonnegative integers. We
write ` ≤ q if `n ≤ qn, for n = 1, ..., N, and denote(

q
`

)
= q!
`! (q − `)! .

Let gq (x) denote the partial derivative of order q of the function g (x), and hn (w) denote the
n−th derivative of the function h (w) with respect to the one dimensional variable w. According
to the multivariate version of Faà di Bruno’s formula, the partial derivative of order q of the
composite function f (x) = h (g (x)) , i.e., fq (x) , can be expressed as

fq (x) =
|q|∑
n=1

hn (g (x))αq,n (x) , (42)

where αq,n (x) are homogeneous polynomials of degree n in the partial derivatives of g, g` (x),
` ≤ q. To compute the generic derivative of f, it is, therefore, sufficient to determine the poly-
nomials αq,n (x) . These can be computed efficiently by relying on the recursive relationship
proved in Theorem 3.1 of Savits (2006).

24For simplicity I consider the the case in which f (x) is one-dimensional; however, the formulas can be extended
directly to a multi-dimensional case by applying the results for the one-dimensional case to each of the components.
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Theorem A.1 For q ≥ 0N , 1 ≤ j ≤ N, and 1 ≤ n ≤ |q|+ 1, we have

αq+ej ,n (x) =
∑

{`∈NN0 : 0N≤`≤q;|`|≥n−1}

(
q
l

)
gq+ej−` (x)α`,n−1 (x) (43)

where ej is the unit vector with j − th component equal to 1 and we set

α`,0 (x) =

 1 if ` = 0,
0 if ` 6= 0,

Proof See Savits (2006).

Proposition A.2 Faa di Bruno Formula. Let f (x) = g (x)2 , then by the Faa di Bruno formula
for the derivatives of a compound function, we have that the derivatives of h (x) , are given by

f0 (x) = g (x)2 (44)

fq+ej (x) = 2
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
gq+ej−` (x) g` (x)

Proof For the Faa di Bruno, we take h (y) = y2, then h0 (y) = y2, h1 (y) = 2y and h2 (y) = 2.
Then, by the Faa di Bruno we have

fq (x) = h1 (g (x))αq,1 (x) + h2 (g (x))αq,2 (x)

= 2g (x)αq,1 (x) + 2αq,2 (x) .

Now, applying (43) to n = 1, 2, we have

αq+ej ,1 (x) =
∑

{`∈NN0 : 0N≤`≤q;|`|≥0}

(
q
`

)
gq+ej−` (x)α`,0 (x)

= gq+ej (x)

αq+ej ,2 (x) =
∑

{`∈NN0 : 0N≤`≤q;|`|≥1}

(
q
`

)
gq+ej−` (x)α`,1 (x) .
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Finally,

fq+ej (x) = 2g (x)αq+ej,1 (x) + 2αq+ej,2 (x)

= 2g (x) gq+ej (x) + 2
∑

{`∈NN0 : 0N≤`≤q;|`|≥1}

(
q
`

)
gq+ej−` (x) g`,1 (x)

=
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · gq+ej−` (x) g` (x)

Corollary A.3 Let f (x) = g1 (x) g2 (x) , g1, g2 : RN −→ R then the derivatives of h (x) , are
given by

f0 (x) = g1 (x) g2 (x) (45)

fq+ej (x) =
∑

{`∈NN0 : 0N≤`≤q}

(
q
l

)
g1

q+ej−` (x) g2
` (x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
l

)
g2

q+ej−` (x) g1
` (x)

Proof This proof is a direct consequence from the following algebraic identity

(
g1g2

)
(x) =

(
g1 + g2)2 − (g1)2 − (g2)2

2 (x) .

Hence, (
g1g2

)
q+ej

(x) =
((
g1 + g2)2 − (g1)2 − (g2)2

2

)
q+ej

(x)
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From the previous lemma, we know that the derivatives for
(
g1 (x) + g2 (x)

)2 satisfy:

(
g1 + g2

)2

q+ej
(x) =

∑
{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 ·
(
g1 + g2

)
q+ej−`

(x)
(
g1 + g2

)
`
(x)

=
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · g1

q+ej−` (x) g1
` (x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · g2

q+ej−` (x) g2
` (x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · g1

q+ej−` (x) g2
` (x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · g2

q+ej−` (x) g1
` (x)

=
(
g1
)2

q+ej
(x) +

(
g2
)2

q+ej
(x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · g1

q+ej−` (x) g2
` (x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · g2

q+ej−` (x) g1
` (x)

Now, subtracting
(
g1)2

q+ej
(x),

(
g2)2

q+ej
(x) and dividing by two, yields to the desired result.
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B Stein’s Lemmas
Lemma B.1 Let Z ∼ N

(
µ, σ2) and let f any continuously differentiable function such that f ′

exists almost everywhere and E |f ′ (Z)| <∞, then

cov (Z, f (Z)) = E [(Z − µ) f (Z)] = σ2E
[
f ′ (Z)

]
.

Proof

E [(Z − µ) f (Z)] =
∞∫
−∞

(z − µ) f (z) e
− (z−µ)2

2σ2
√

2πσ2
dz

= −σ2f (z) e
− (z−µ)2

2σ2
√

2πσ2

∣∣∣∣∣∣
∞

−∞
+ σ2

∞∫
−∞

f ′ (z) e
− (z−µ)2

2σ2
√

2πσ2
dz

= σ2E
[
f ′ (Z)

]
.

Proposition B.2 For any function f (x1, ..., xN ) such that ∂f /∂xi exists almost everywhere
and E

∣∣∣ ∂∂xi f (X)
∣∣∣ <∞, i = 1, ..., n. Let ∇f (X) =

(
∂f
∂x1

, . . . , ∂f∂xn

)>
. Then the following identity

holds
cov (X, f (X)) = Σ× E [∇f (X)] , (46)

more specifically

cov (X1, f (X1, ..., XN )) =
N∑
i=1

cov (X1, Xi)× E
[
∂

∂xi
f (X1, ..., XN )

]
.

Proof Let Z = (Z1, ..., ZN ) , where Zi are i.i.d. N (0, 1) random variables. From the previ-
ous lemma, we know that for any g (X) , differentiable almost everywhere, cov [Zi, g (Z)] =
E [∂g /∂zi ] . Hence

cov [Z, g (Z)] = E [∇g (Z)] . (47)

Stein (1981) provides a more elaborated proof of the previous result. Now, the random vector
X can be written as X = Σ1/2Z+µ, and f (Z) = g

(
Σ1/2Z+µ

)
. Hence, the left hand side of

(46) is

cov [X, f (X)] = cov
[
Σ1/2Z+µ, g

(
Σ1/2Z+µ

)]
= Σ1/2cov

[
Z, g

(
Σ1/2Z+µ

)]
= ΣE [∇f (X)] .
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C Standard Kalman Filter
The state space representation of a linear model is given by

yt = Hxt + vt (48)

xt = Fxt−1 + wt

where vt ∼ N(0, R) and wt ∼ N(0, Q). The first equation is the observation equation and rep-
resents the true measurement of the state variable xt, and H represents the model that maps
the true state space into the observed space; vt is the measurement noise. The second equation
represents the evolution of the state variable of the state variable.

In systems like (48) where the state variables are normally distributed and the measurement
equations are linear, the standard Kalman filter yields to efficient state estimates in a minimum
variance criteria. The estimates can be obtained using the Kalman filter update and prediction
rules. Following, Kalman (1960), the optimal estimate of x̂t+1|t+1. (in an minimum variance
sense) is given by updating the prediction equation with the current measurement.

A prediction state is given by

x̂t+1|t = Fx̂t|t (49)

Pt+1|t = FPt|tF
T +Q.

The update rule is given by

x̂t+1|t+1 = x̂t+1|t +Kt+1
(
yt+1 −Hx̂t+1|t

)
(50)

P yyt+1|t = HPt+1|tH
T +R

Kt+1 = Pt+1|tH
T
[
P yyt+1|t

]−1

Pt+1|t+1 = (I −Kt+1H)Pt+1|t
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D The Extended Kalman Filter
A well known approximation to non linear filtering is the extended Kalman filter, which relies on
a first order Taylor expansion of the measurement and transition equations around the predicted
value of the state variable at time xt+1|t . The measurement equation is written as follows

yt+1 = h
(
xt+1|t

)
+Ht+1

(
xt+1 − xt+1|t

)
+ vt+1 (51)

where
Ht+1 = ∂h

∂xt+1

∣∣∣∣
xt+1=xt+1|t

(52)

denotes the Jacobian matrix of the nonlinear function g computed at xt+1|t . The transition
equation is linearized as in (52) and is written as

xt+1 = g
(
xt|t

)
+Gt

(
xt − xt|t

)
+ εt+1, (53)

where
Gt = ∂g

∂xt

∣∣∣∣
xt=xt|t

.

The covariance matrices P xyt+1|t and P yyt+1|t are then computed as

P xyt+1|t = P xxt+1|tHt+1, (54)

P yyt+1|t = Ht+1P
xx
t+1|tH

>
t+1 +R (55)

and
P xxt+1|t = GtP

xx
t|t Gt +Q

The estimate of the state vector is then updated using the standard Kalman filter recursions.
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E The Unscented Kalman Filter
The unscented Kalman filter, UKF hereafter, uses the exact nonlinear functions in the obser-
vation and transition equations to approximate the moments of the state variables. Unlike the
extended Kalman filter, the UKF does not rely on linearizations. The UKF approximates the
conditional distribution of the state variables using the unscented transformation Julier and
Uhlmann (1997), which is a method for computing statistics of nonlinear transformations of
random variables. Julier and Uhlmann (2004) prove that this approximation is accurate to the
third order for Gaussian random variables and up to a second order for non-Gaussian states.
Moreover, the UKF does not rely on the calculation of Jacobians or Hessian matrices and its
efficiency is comparable to the extended Kalman filter as noted by van Binsbergen and Koijen
(2011) and Christoffersen, Jacobs, Karoui, and Mimouni (2012).

Let x denote a random vector with mean µx and covariance matrix P xx. Consider a nonlinear
transformation y = h (x). The basic idea behind the scaled transformation is to generate a set
of points, denoted as sigma points, with first and second moments denoted by µx and P xx,

respectively, and apply the nonlinear transformation to each sigma point. More precisely, the
n−dimensional random vector is approximated by a set of 2n+ 1 weighted points given by

X0 = µx, (56)

Xi = µx +
(√

(n+ ξ)P xx
)
i
, for i = 1, . . . , n (57)

Xi = µx −
(√

(n+ ξ)P xx
)
i
, for i = n+ 1, . . . , 2n (58)

with weights

Wm
0 = ξ

(n+ ξ) ,

W c
0 = ξ

(n+ ξ) +
(
1− ρ2 + θ

)
Wm
i = W c

i = 1
2 (n+ ξ) , for i = 1, ..., n,

where ξ = ρ2 (n+ λ)− n, and where
(√

(n+ ξ)P xx
)
i
is the i−th column of the matrix square

root of (n+ ξ)P xx, ρ is a positive scaling parameter that minimizes higher order effects and can
be chosen to be arbitrarily small, λ is a positive parameter that guarantees positive-definiteness
of the covariance matrix, θ is a nonnegative parameter that can be used to capture higher
order moments of the distribution of the state variable. Julier and Uhlmann (1997) propose
to use θ = 2 for Gaussian distributions. Once the sigma points are computed, the non linear
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transformation is applied to each of the sigma points defined in (56)− (58)

Yi = h (Xi) , for i = 0, ..., n.

The unscented Kalman filter relies on the unscented transformation to approximate the covari-
ance matrices Pt+1|t , P

xy
t+1|t , P

yy
t+1|t . An augmented state vector defined by including the state

and measurement noises yielding to a Na = 2p+ n dimensional vector

X at =


xt

εt

vt

 ,
and the unscented transformation is applied to X at . The process for computing the UKF is
summarized as follows:

1. Compute 2Na + 1 sigma points of the augmented state space:

X a
t|t

= xt|t , (59)

X a
t|t

= xt|t +
(√

(Na + ξ)P at|t
)
i
, for i = 1, . . . , Na

X a
t|t

= xt|t −
(√

(Na + ξ)P at|t
)
i
, for i = Na + 1, . . . , 2Na

2. Prediction Step:

X x
t+1|t

= g
(
X x
t|t

)
+ X ε

t+1|t

xt+1|t =
2Na+1∑
i=1

Wm
i X xi,t+1|t

Pt+1|t =
2Na+1∑
i=1

W c
i

[
X x
i,t+1|t

− xt+1|t
] [
X x
i,t+1|t

− xt+1|t
]>

Yi,t+1|t = h
(
X xi,t+1|t

)
+ X εi,t+1|t

yt+1|t =
2Na+1∑
i=1

Wm
i Yi,t+1|t

3. Measurement update:

P xyt+1|t =
2Na+1∑
i=1

W c
i

[
X x
i,t+1|t

− xt+1|t
] [
Yx
i,t+1|t

− yt+1|t
]>
,

P xyt+1|t =
2Na+1∑
i=1

W c
i

[
Yx
i,t+1|t

− yt+1|t
] [
Yx
i,t+1|t

− yt+1|t
]>
.
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The estimate of the state vector is updated through the standard Kalman Filter recursions.
The algorithm is initialized by setting the initial value to the unconditional mean and
variance of the state vector.

x0|0 = E [xt]

P0|0 = var [xt]

xa0|0 =
[
x0|0 0 0

]>

and

P a0|0 =


P0|0 0 0

0 Q 0
0 0 R

 .
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F QML Standard Errors
Gallant and White (1988) show that under certain regularity conditions, the covariance matrix
of the QML estimator θ∗ can be estimated using the formula

Cov (θ∗) = A−1
T (θ∗)BTA−1

T (θ∗) ,

where AT (θ∗) is the Hessian of the log-likelihood function,

AT (θ∗) = ∂2

∂θ∂θ′
L (θ) ,

and BT is a consistent estimator of the covariance matrix of the first derivative of the QML
function (19). Newey and West (1987) proposed an estimator for BT given by

BT =
T∑
t=1

stst
′ +

L∑
t=1

T∑
r=t+1

(
1− t

L+ 1

) [
sts
′
t−r + st−rs

′
t

]
,

where
st = ∂

∂θ
lt (θ) .
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G Calculation of Moments
Definition Let X = (x1, x2, x3, ..., xN )> be normally distributed vector with mean vector µ
and variance covariance matrix Σ then the moment generating function of X, denoted byMX(t)
is given by:

MX(t) = E[exp(X>t)] = exp(µ>t+ t>Σt
2 )

where t is an N−dimensional real vector.

Lemma G.1 Let X = (x1, x2, x3, ..., xN )T be normally distributed with moment generating
function, MX(t), then

∂q1+...+qNMX(t)
∂tq1

1 ...∂t
qN
N

= E[xq1
1 ...x

qN
N exp(X>t)].

Proposition G.2 Let X = (x1, x2, x3)> be normally distributed vector with mean vector µ and
variance covariance matrix, Σ, then

E(exp(x1)x2) = exp(µ1 + σ2
1

2 )(σ1,2 + µ2)

cov(exp(x1), x2) = exp(µ1 + σ2
1

2 )σ1,2

cov(exp(x1), exp(x2)) = exp(µ1 + µ2 + σ2
1 + σ2

2
2 )(exp(σ1,2)− 1)

E(exp(x1) · x2 · x3) = exp(µ1 + σ2
1

2 )[(µ2 + σ1,2)(µ3 + σ1,3) + σ2,3]

cov(exp(x1) · x2, x3) = exp(µ1 + σ2
1

2 )[σ1,3(µ2 + σ1,2) + σ2,3]

Proof The proof follows directly from applying the previous lemma.
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Figure 1
Sensitivity: This figure compares a simulated time series of 1000 observations for the standard Stochastic
Volatility Model with its filtered estimates. The filtered estimates in top figure were calculated using a fifth
order approximation and an infinite order of approximation (Gaussian filters). The parameter values used
for the simulation as well as for the filtered estimates are φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5.
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Figure 2
Sensitivity: This figure plots the quasi-likelihood function of a the standard Stochastic Volatil-
ity Model for different sets of parameter vectors. The plots show the quasi-log-likelihood function
of the data for different values of φ (top left), σε (top right), σ (bottom right) and ρ (bottom
left). The vertical dashed lines represent the parameter values that were used to simulate the data.
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Figure 3
Returns: This figure plots the monthly log-consumption growth on the monthly real con-
sumption series per capita for nondurables and services from January 1959 to March 2012.
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Figure 4
Order of Approximation: This figure plots the quasi-likelihood function of the Model by Brandt
and Kang (2004). The plot compares the quasi-likelihood function for different orders of approxi-
mation, M = 1, 2, ..., 15 (asterisks), with quasi-likelihood functions constructed with the Unscented
Kalman Filter and an infinite order of approximation filter or Gaussian filters (continuous lines).
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Figure 5
Sensitivity: This figure plots the quasi-likelihood function of the Model by Brandt
and Kang (2004). The quasi-likelihood function is based on a random draw
of T = 5000 returns simulated from the model with the parameter values .
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Figure 6
Returns: This figure plots the monthly returns on the value weighted CRSP in-
dex as well as the short rate from January 1946 through December 2011.
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Figure 7
Filtering: This figure plots the filtered estimates of the state variables evaluated in a simulated sample path
of size T = 1000 with parameter values β = 0.95, δ = 0.15, α = 0.30, ρ = 0.90,γ = 3,σy = 0.30 and σε = 0.2
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Figure 8
Sensitivity: This figure plots the likelihood function evaluated at a sample path of size T = 500 with
parameter values β = 0.95, δ = 0.15, α = 0.30, ρ = 0.90,γ = 3,σy = 0.30 and σε = 0.2 .
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Figure 9
Sensitivity: This figure plots the likelihood function evaluated at a sample path of size T = 500 us-
ing the parameter values β = 0.95, δ = 0.15, α = 0.30, ρ = 0.90,γ = 3,σy = 0.30 and σε = 0.2
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Table 1
Stochastic Volatility Model: Simulation Results

Filtering Method Mean Squared Error Mean Squared Error
Average Std. Dev. Average Std. Dev.

EKF 0.3795 0.1343 2.5508 1.4006

UKF 0.3067 0.1103 2.5689 1.4368

TKF 2 0.3043 0.0944 2.5424 1.3914

TKF 3 0.3043 0.0944 2.5424 1.3914

TKF 4 0.3037 0.0888 2.5416 1.3897

TKF 5 0.3037 0.0888 2.5416 1.3897

TKF 6 0.3105 0.0912 2.5417 1.3900

TKF 7 0.3105 0.0912 2.5417 1.3900

TKF 8 0.3123 0.0918 2.5417 1.3901

TKF 9 0.3123 0.0918 2.5417 1.3901

TKF 10 0.3127 0.0919 2.5417 1.3901

TKF 11 0.3127 0.0919 2.5417 1.3901

Gaussian 0.3127 0.0920 2.5417 1.3901

State estimation results. This table presents the mean and variance of the mean squared errors (MSE) of
the model:

yt = ηt · σt
log σ2

t = log σ2 + φ log σ2
t−1 + εt, εt ∼ N

(
0, σ2

ε

)
,

The results are based on 250 independent samples of T = 1000 simulated from the model with the
parameters φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5 .

55



Table 2
Stochastic Volatility Model: Simulation Results

Method φ σε σ ρ

Parameter Value 0.9800 0.1414 1.0000 -0.5000

EKF 0.9348 0.1491 1.2402 -0.3598
(0.1454) (0.0701) (0.4162) (0.4479)

UKF 0.9287 0.1614 1.2926 -0.4383
(0.1258) (0.1050) (0.4539) (0.4656)

TKF3 0.9241 0.1601 1.2926 -0.4805
(0.1698) (0.1012) (0.4277) (0.4663)

TKF5 0.9292 0.1753 0.966 -0.4663
(0.2085) (0.1030) (0.3975) (0.4353)

TKF7 0.9564 0.1781 0.8502 -0.4852
(0.0693) (0.1035) (0.4103) (0.4091)

TKF9 0.9405 0.1907 0.8358 -0.4418
(0.1629) (0.1013) (0.5483) (0.3999)

GF 0.955 0.1542 0.9147 -0.5393
(0.0820) (0.0899) (0.4263) (0.3840)

Finite sample properties of the Quasi-Maximum Likelihood estimator. This table presents the sample
mean and standard deviation of the Quasi-Maximum Likelihood estimates of the model:

yt = ηt · σt
log σ2

t = log σ2 + φ log σ2
t−1 + εt, εt ∼ N

(
0, σ2

ε

)
,

The results are based on 250 independent samples of T = 500 simulated from the model with parameters
in the first row.
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Table 3
Data: Descriptive Statistics

Monthly Consumption Growth
Mean 0.0013

Std. Dev. 0.0036
Max 0.0140
Min -0.0191

Median 0.0014
Skewness -0.4148
Kurtosis 5.6120

Autocorrelation
1-month -0.1869
6-month 0.0688
12-month -0.0242
24-month -0.0955

This table presents descriptive statistics of monthly log-consumption growth on the monthly real
consumption series per capita for nondurables and services from January 1959 to March 2012.
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Table 4
Parameter Estimates

φ σε σ ρ µC

EKF 0.9575 0.2997 0.1591 0.9991 0.0014 -586.08(0.0862) (0.8654) (0.2196) (2.5046) (0.0002)

UKF 0.9623 0.0198 0.0035 0.9983 0.0012 2696.67(0.0616) (0.0508) (0.0012) (0.0004) (0.0027)

TKF 3 0.9623 0.0221 0.0035 0.8923 0.0012 2696.67(0.0287) (0.0218) (0.0007) (0.0005) (0.0012)

TKF 5 0.9626 0.0266 0.0035 0.7436 0.0012 2696.71(0.0724) (0.0465) (0.0006) (0.0007) (0.0014)

TKF 7 0.9627 0.0216 0.0035 0.9179 0.0012 2696.71(0.0203) (0.0332) (0.0006) (0.0045) (0.0018)

TKF 9 0.9627 0.0228 0.0035 0.8683 0.0012 2696.71(0.0446) (0.0297) (0.0005) (0.0003) (0.0011)

TKF 11 0.9626 0.0336 0.0035 0.5867 0.0012 2696.71(0.0204) (0.0146) (0.0002) (0.0008) (0.0002)

GF 0.9626 0.0353 0.0035 0.5574 0.0012 2696.71(0.0205) (0.0160) (0.0001) (0.0006) (0.0002)

This table describes presents the the Quasi-maximum likelihood estimates of the model:

∆ ln(Ct+1)− µc = σηt+1

st+1 = φst + εt+1, εt ∼ N
(
0, σ2

ε

)
,

The estimates are for monthly real consumption growth on the monthly vintage series from the
Federal Reserve Bank of Philadelphia from January 1959 to March 2012. Each row contains the
estimates under the filtering techniques based on different orders of approximation. Standard errors
are reported between parenthesis.
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Table 5
Finite sample properties of Quasi-Maximum-Likelihood estimator.

Parameters
Model A Model B

True Value Average Std. Dev. True Value Average Std. Dev.

a11 0.8589 0.9111 0.1158 0.8313 0.8277 0.2100
a21 -0.0529 -0.0099 0.0983 -0.0211 -0.0377 0.2350
a12 0.1084 0.3474 0.3015 0.1168 0.3771 0.3617
a22 0.9226 0.8792 0.1273 0.9110 0.8181 0.2125
b11 0.0076 0.0033 0.0070 0.0064 0.0031 0.0081
b22 0.0553 0.0347 0.0375 0.0561 0.0812 0.01123
ρ -0.6336 0.1687 0.8037 -0.4577 -0.0018 0.5760
µ 0.0067 0.0067 0.0016 0.0065 0.0067 0.0015
σ 0.0418 0.0523 0.0046 0.0385 0.0524 0.0045
ρµ - - - -0.0866 0.1154 0.7475
ρσ - - - - - -

Parameters
Model C Model D

True Value Average Std. Dev. True Value Average Std. Dev.

a11 0.8658 0.7841 0.2581 0.8677 0.8037 0.2501
a21 -0.0885 -0.0259 0.2425 -0.1292 -0.1065 0.2374
a12 0.0861 0.3229 0.2872 0.0947 0.3121 0.3052
a22 0.8973 0.8727 0.1687 0.9086 0.8540 0.1880
b11 0.0060 0.0065 0.0078 0.0047 0.0044 0.0069
b22 0.0614 0.0104 0.0268 0.0591 0.0338 0.0755
ρ -0.5584 -0.0211 0.5872 -0.5621 0.0036 0.6259
µ 0.0062 0.0063 0.0014 0.0062 0.0063 0.0014
σ 0.0382 0.0506 0.0035 0.0382 0.0508 0.0034
ρµ - - - -0.0517 0.1438 0.7477
ρσ -0.2541 -0.6629 0.3716 -0.2430 -0.5841 0.4675

This table describes the sampling distribution of the Quasi-maximum likelihood of the model:

yt = µ exp (x1t) + σ exp (x2t)x3t,

and

xt = Ãxt−1 + wt with wt ∼ N
(
0, Σ̃
)
,

where

Ã =

[
a11 a12 0
a21 a22 0
0 0 0

]
, Σ̃ =

[
b11 ρ

√
b11b22 ρµ

√
b11

ρ
√
b11b22 b22 ρσ

√
b22

ρµ
√
b11 ρσ

√
b22 1

]
.

The results are based on 500 independent samples of T = 792 returns simulated from the model with the parameters in the first column.
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Table 6
Data: Descriptive Statistics

Market Index Short rate
Mean 0.0083 0.0036

Std. dev. 0.0435 0.0025
Max 0.1532 0.0134
Min -0.2554 0.0000

Median 0.0127 0.0034
Skewness -0.7680 0.9463
Kurtosis 5.6443 4.2273

Autocorrelation
1-month 0.0908 0.9684
6-month -0.0556 0.8907
12-month 0.0348 0.8080
24-month -0.0008 0.6327

This table presents descriptive statistics of monthly log-returns on the value-weighted CRSP index
and the short rate from January 1946 to December 2011. The short rate is the yield on a
one-month Treasury bill.
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