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Abstract

Recent literature empirically documents large time-series variation in the market Sharpe
ratio, spurring theoretical explanations of this phenomenon. I revisit the empirical evidence and
ask whether estimates of Sharpe ratio volatility may be biased due to limitations of the standard
OLS methods used in estimation. Based on simulated data from a standard calibration of the
long-run risks model, I find that OLS methods used in prior literature produce Sharpe ratio
volatility five times larger than its true variability. The difference arises due to measurement
error. To address this issue, I propose the use of filtering techniques that account for the Sharpe
ratio’s time variation. I find that these techniques produce Sharpe ratio volatility estimates of
less than 15% on a quarterly basis, which matches more closely the predictions of standard asset
pricing models. Additionally, my results have practical implications for portfolio allocation,

where upward-biased estimates of Sharpe ratio volatility imply excessive portfolio rebalancing.
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1 Introduction

The Sharpe ratio measures the excess return of an investment relative to its standard deviation.
Most leading consumption-based asset pricing theories imply a relatively stable market Sharpe
ratio. However, empirical evidence suggests that there is more variability in the Sharpe ratio
than standard models account for. Recently, |Lettau and Ludvigson (2010) suggest that the
finance literature should address this "Sharpe ratio variability puzzle." They document that
the empirical standard deviation of the estimated Sharpe ratio is about 47% per quarter. In
contrast, a quarterly calibration of the standard (Campbell and Cochrane|(1999) model produces
a substantially lower volatility of 9%. In turn, Chien, Cole, and Lustig| (2012)) suggest that

passive investors’ infrequent rebalancing explains the high variability of market Sharpe ratios.

In this paper, I examine whether estimates of the variability of the Sharpe ratio might be
biased due to limitations of the empirical methodology used in estimation. In particular, I
show that measurement error in estimated Sharpe ratios may help to explain the Sharpe ratio
volatility puzzle. To do this, I simulate data from a standard calibration of the [Bansal and
Yaron| (2004) long-run risks (LRR) model. Following practice common in the literature, I then
estimate Sharpe ratios using ordinary least squares (OLS) methods to infer the variability of
the model-generated Sharpe ratios. OLS methods lead to estimates of Sharpe ratio volatility of
approximately 18%, even though the true variability of the model-implied Sharpe ratio is only
3%. The difference in estimates is due to measurement error induced by the standard Sharpe

ratio estimation methodology.

Once I have documented the difference between the Sharpe ratio’s estimated and true volatil-
ity, I study whether improved empirical methodologies might better account for the true vari-
ability of the Sharpe ratio. In particular, I implement filtering methods, which are statistical
tools that recover unobservable state variables using measurements that are observed with noise.
These techniques are flexible enough to allow the econometrician to perform statistical inference
based on time-varying information observed with measurement error. Moreover, the modeling
representation is general enough to include time varying information as well as flexible correla-

tion structures and errors in variables[H

I use two different exercises to show the limitations of OLS methods. First, I run a controlled
experiment in which I have full information of the data generating process of stock returns, state

variable dynamics and parameter values. I use simulated data from the LRR model as calibrated

1See Hamilton| (1994)), |[Kim and Nelson| (1999) and |Doucet, de Freitas, Gordon, and Smith! (2001) for an introduction
to Filtering methods. |Crisan and Rozovskiil (2011) provide a more recent literature review in nonlinear filtering
methods.



by Bansal and Yaron (2004) to estimate conditional means, variances and Sharpe ratios. The
use of artificial data from a fully specified economy is important because it allows the economic
reasons that drive the variation in Sharpe ratios to be isolated. Moreover, information about
model specification and state-variable dynamics is incorporated within the filtering estimation
procedure. Furthermore, the tractability of the LRR model allows data to be simulated with

relative ease.

I then implement two econometric techniques: I run standard OLS regressions and then
I apply filtering techniques. I compare both sets of results with the closed-form expressions
implied by the LRR model as a benchmark. My results show that the Sharpe ratios based on
standard OLS methods are more volatile than the estimates obtained with filtering techniques.
Moreover, the volatility estimates obtained via filtering differ from the true value by less than
1%, which is a significant improvement over OLS estimates. The main driver of this result is

the use of conditioning information within the estimation process.

There are a number of reasons why a filtering approach can improve upon predictive re-
gressions to estimate expected returns and conditional volatilities. First, filtering explicitly
acknowledges that both expected returns and volatilities are time varying. Filtering techniques
aggregate the entire history of realized returns parsimoniously; in contrast, predictive regressions
use lagged predictors to form estimates of expected returns and volatilities. Instead of adding
lags to a vector autorregressive (VAR) model, which would increase the number of parameters
to be estimated, a latent variable approach such as filtering incorporates the information con-
tained in the history of observed returns. Moreover, filtering techniques are flexible enough to
be used with large information sets without relying on additional instruments that may be mis-
specified (Ferson, Sarkissian, and Simin| (2003))). Finally, filtering is more robust to structural
breaks than are OLS techniques (Rytchkov| (2012))), since it is insensitive to robust shifts in
relations over the long run. For example, in the predictability literature, a substantial shift in
the dividend-price ratio destroys its forecasting povverE] Also, robustness to structural breaks
makes the filtering approach more valuable from an ex-ante point of view, when it is unclear

whether structural breaks will occur.

The standard method used in the literature to estimate Sharpe ratios is to use fitted mo-
ments from first-stage predictive regressions as proxies for the unobserved conditional mean and
volatility. Such a technique has some important drawbacks. First, the dynamics of the condi-
tional mean and volatility are determined by the joint conditional distribution of the first-stage
predictors. Thus, with any model misspecification, such as omitted variables, the dynamics of

the fitted moments would not necessarily correspond to the dynamics of the true moments. In

2See [Lettau and Van Nieuwerburgh! (2008) for a detailed explanation.



addition, even if the predictive models for the conditional mean and volatility are well specified,
the effect of errors in variables, which are induced by the first-stage regressions, is not trivial to

quantify in a VAR model.

Simulating data of stock returns by means of theoretical models is a powerful tool because the
economic reasons that drive the simulated time-series variation are fully identified. However,
theoretical models are abstractions, and by definition misspecified. An alternative form of
analyzing stock returns is via reduced form models, which are statistical representations that
do not impose any economic structure and thus aim to better describe historical data. To
infer Sharpe ratios and their variability from the data, I conduct a second exercise based on the
reduced form model by Brandt and Kang| (2004). In this model, expected returns and volatilities
are estimated as latent variables and identified from the history of returns. The main advantage
of this approach is that it does not rely on prespecified predictors and is not subject to errors
in variables or model misspecification. I apply filtering techniques to estimate the parameters
of the model and to extract estimates of conditional moments of returns as well as conditional
Sharpe ratios. As a result, my estimate for quarterly Sharpe ratio volatility using the reduced
form model is in the order of 5% to 10%, whereas my estimate for the quarterly Sharpe ratio
volatility using the OLS methods is 42%.

Consistent with the results of the simulation exercise, I find that conditioning information
drives the results above. Reduced form models do not rely on predetermined conditioning
variables to estimate conditional moments: The state variables are identified from the history
of returns. Standard OLS techniques generate fitted moments from a set of predictive regressions
as proxies for the unobservable conditional mean and volatility. The fitted moments depend
on the joint distribution of these predictors. Consequently, any model misspecification would
generate fitted moments that do not correspond to the true dynamics of the conditional mean

and volatility, and thus, the dynamics of the Sharpe ratio.

My findings have important implications in an asset management context since the Sharpe
ratio is a commonly used measure of performance evaluation. For investors willing to allocate
their wealth between the market portfolio and the risk-free instrument, the market Sharpe
ratio becomes a natural benchmark of their investments. If this ratio is highly volatile, the
variation needs to be taken into account for hedging and rebalancing purposes. Indeed, |[Lustig
and Verdelhan (2012)) report that accounting for time variation in Sharpe ratios may lead to

optimal trading strategies that differ markedly from buy-and-hold strategies.

Furthermore, a mean-variance investor would have an obvious interest in understanding

the volatility of Sharpe ratios. For example, in a partial equilibrium settingﬂ the Sharpe ratio

3Some examples are Merton| (1969) and [Merton| (1971).
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determines the fraction of wealth that an agent invests in the market portfolio. I show that if an
investor uses OLS methods to determine this fraction, then the portfolio weights would exhibit
extremely volatile behavior over time, which may result in high rebalancing costs. I also show
that if an investor applies filtering techniques to estimate the fraction of wealth invested in the
market portfolio, then these costs will be substantially lower. Even further, for a representative
agent with habit formation preferences, the Sharpe ratio indicates the timing and magnitude of
fluctuations of risk aversion (Constantinides| (1990)) and |Campbell and Cochrane (1999)). Thus,
the time variation in the market Sharpe ratio may provide information about the fundamental

economics underlying the asset prices.

A number of studies analyze the predictable variation of the mean and volatility of stock
returns from an empirical point of viewE] However, only a few papers have investigated the time
variation observed in equity Sharpe ratios. [Lettau and Ludvigson| (2010]) measure the conditional
Sharpe ratio of U.S. equities by forecasting stock market returns and realized volatility using
different predictors. They obtain highly counter-cyclical and volatile Sharpe ratios and show
that neither the external habit model of |Campbell and Cochrane] (1999) nor the LRR model
Bansal and Yaron (2004) deliver Sharpe ratios volatile enough to match the data. Using a
latent VAR process, [Brandt and Kang (2004) also find a highly counter-cyclical Sharpe ratio.
Ludvigson and Ng (2007) document the same result using a large number of predictors in a

dynamic factor analysis.

Tang and Whitelaw| (2011) document predictable variation in stock market Sharpe ratios.
Based on a predetermined set of financial variables, the conditional mean and volatility of
equity returns are constructed and combined to estimate the conditional Sharpe ratios. [Tang
and Whitelaw (2011)) find that conditional Sharpe ratios show substantial time variation that
coincides with the phases of the business cycle. |Lustig and Verdelhan| (2012) provide evidence
that Sharpe ratios are higher in recessions than in expansions in the United States and other
OECD countries. They also find that the changes in expected returns during business-cycle
expansion and contractions are not explained by changes in near-term dividend growth rates.
These papers focus on the counter-cyclical behavior of Sharpe ratios. My paper focuses on
the conditional volatility of market Sharpe ratios and finds that the volatility estimates are

substantially smaller than the evidence previously documented.

My paper is also related to Brandt and Kang| (2004), |Pastor and Stambaugh (2009), van
Binsbergen and Koijen| (2010) and |[Rytchkov| (2012)), who analyze return predictability using

state-space modelsE] I contribute to the literature by focusing on the dynamic behavior of the

4See |Lettau and Ludvigson| (2010) for a comprehensive survey.
In an early work in this body of literature, |Conrad and Kaul| (1988) use the Kalman filter to extract expected



market Sharpe ratio and by showing that standard OLS methods as applied in the literature
generate measurement error which impacts estimates of Sharpe ratio volatility. Moreover, I also
show that filtering techniques are a good approach for estimating the ratio’s true volatility. I
also find that filtering techniques are better able to capture the dynamic behavior of market

Sharpe ratios.

The remainder of this paper is organized as follows. Section 2 provides a theoretical frame-
work to interpret Sharpe ratios. Section 3 introduces the LRR model and its implications
for empirical moments. Section 4 describes the simulation exercise as well as the estimation
methodologies for expected returns, volatilities and Sharpe ratios. In section 5, an analysis of
Sharpe ratios in reduced form models is described and the empirical results are shown. Section

6 presents asset allocation implications. Finally, conclusions are presented in section 7.

2 Sharpe Ratios in Asset Pricing

The conditional Sharpe ratio of any asset at time ¢, denoted by SRy, is defined as the ratio of

the conditional mean excess return to its conditional standard deviation; that is

E¢ [Rev1 — Ryeya]

SR — ’
"7 0y [Rey1 — Ry

(1)

where R; and Ry; denote the gross asset return of an asset and the one-period risk-free interest
rate, respectively, and the conditional expectations are based on the information available at

time t.

Harrison and Kreps| (1979)) show that the absence of arbitrage implies the existence of a
stochastic discount factor (SDF) or pricing kernel, denoted by M;, that prices all assets in the
economyﬁ An implication of no arbitrage is that the expectation of the product of the stochastic

discount factor and the gross asset return of any asset must be equal to one; that is,
B¢ [Mip1 Resa] = 1. (2)

An implication of is that the conditional Sharpe ratio is proportional to the risk-free
rate, the volatility of the pricing kernel and the correlation between the pricing kernel and the
return; that is

SR; = —Rypi110¢ [Myy1] Corry [Reg1, My, (3)

returns, but only from the history of realized returns. Other studies that relate latent variables with predictability
include [Lamoureux and Zhoul (1996)), /Ang and Piazzesi| (2003) and Dangl and Halling| (2012).
6A detailed explanation is shown in Appendix



where o; and Corr; are the standard deviation and correlation, conditional on information at
time t, respectively. The conditional Sharpe ratio of any asset in the economy is time varying
as long as the risk-free rate varies or the pricing kernel is conditionally heteroskedastic -that
is, oy [M;41] changes over time- or if the correlation between the stock market return and the
SDF is time varying. In general, each model defines an SDF'; therefore, we learn from Eq.
that in this setup, Sharpe ratios are model dependent. In this paper, I focus on the conditional
Sharpe ratio of the aggregate stock market, which is defined as the instrument that pays the
aggregate dividend every period. However, the analysis can be extended to the Sharpe ratios

of any traded asset.

The next section presents the LRR model of Bansal and Yaron (2004)), with a particular
focus on the implications for expected returns, volatilities and Sharpe ratios of the aggregate
stock market. This model explains stock price variation as a response to persistent fluctuations
in the mean and volatility of aggregate consumption growth by a representative agent with a
high elasticity of intertemporal substitution. The tractability of the LRR model allows data
to be simulated with relative ease. It provides analytical expressions for expected returns,
volatilities and Sharpe ratios for the market portfolio, conditional on the |[Campbell and Shiller
(1988) log-linearizations. Later in the paper I briefly present other asset pricing models and

their implications for market Sharpe ratios.

3 The Long-Run Risks Model

Bansal and Yaron (2004) and Bansal, Kiku, and Yaron| (2012a)) (BY and BKY hereafter) propose
the following stochastic processes for the log-consumption and log-dividend growth, denoted by

Aciy1 and Adyy1, respectively:

Acip1 = e + ¢ + 0t

Ti4+1 = PTt+ PeOteit1

0,524_1 = 24w (Uf — 52) + oW1 (4)
Adir1 = pa+ ¢z + poturi1 + 7O

W41 €41, U1y Tt+1 i.1.d. N(O,l),

where, z; is a persistently varying component of the expected consumption growth rate and o7
is the conditional variance of consumption growth, which is time varying and highly persistent,
with unconditional mean 2. The variance process can take negative values, but it will hap-

pen with small probability if its conditional mean is high enough with respect to its variance.



Dividends are correlated with consumption since the growth rate, Ad;11, shares the same persis-
tent predictable component scaled by a parameter ¢, and the conditional volatility of dividend

growth is proportional to the conditional volatility of consumption growth.

BY solve the LRR model using analytical approximations. They assume assume a repre-
sentative agent with Epstein-Zin utility with time discount factor d, coefficient of relative risk
aversion ~, and elasticity of intertemporal substitution . The log of the stochastic discount

factor, my41, for this economy is given by
0
me+1 = 0logd — $A0t+1 + (0 = 1) ra 41, (5)

where = (1 —~) /(1 — ) and 74441 is the return on the consumption claim, or equivalently,
the return on aggregate wealth. BY use the |Campbell and Shiller (1988) log-linearizations
to obtain analytical approximations for the returns on the consumption and dividend cliams.

Further details on the model and derivations are explained in Appendix

3.1 Implications for Expected Returns, Volatilities and Condi-
tional Sharpe Ratios

Under the long-run risks framework, the equity premium is an affine function of the volatility

of consumption growth alone:
Et [rmt+1 — rpe41) = Eo + E107. (6)

The model also implies that the conditional variance of the market return is an affine function
of 02 :
Vart (rm,t—i-l) = D(] + D10't2. (7)

The coefficients Ey, E1, Dy and D are known functions of the underlying time-series and pref-

erence parameters. The general expressions and details about their derivation are shown in

Appendix

The covariance between the observed market excess return, 7,41, and the innovation to

the volatility process, wy41 is given by

covy (T t41, Wit1) = K1,mA2 m0Ouw- (8)

One of the appealing properties of the long-run risk model, is that A, ,, < 0, for standard



calibrations, implying that the LRR model is able to reproduce the negative feedback eﬁ’ectﬂ
Another implication of Eq. , is that the conditional correlation between excess returns and
the innovations to consumption risk is time varying because the conditional variance of stock

returns is time varying.

Following Bansal, Kiku, and Yaron| (2012b), the cumulative log-return over K time periods

is just a sum of K one-period returnsﬁ

K

(Pmjttk = T e4k) -

k=1

The conditional moments are given by

K
E, [Z Tmt+k — Tf,t+k1 = Eox + Ey ko7, (9)
k=1
and
K
Vary [Z Ttk — rf,t+k‘| =Dy i + Dy 07, (10)
k=1

where Eg i, E1 x, Do i, and Dy i are known functions of the preference parameters and the
number of periods, K, used for time aggregation. If the time unit is the month, then evaluating

Egs. @ and ([10)) provides an expression for annual estimates.

The conditional Sharpe ratio of an investment over K time periods is given by the ratio of
the conditional mean returns divided by its conditional standard deviation, and is represented
by

D D
E0K+%K+<E1,K+ 12’K>O't2

\/DO,K + Dy go?

Eq. implies that the only source of variation in the conditional Sharpe ratio under the LRR

framework is the volatility of consumption growth. Moreover, the conditional Sharpe ratio is

(11)

stochastic unless o7 is deterministic. Furthermore, under the standard calibrations by BY, the
conditional Sharpe ratio is strictly increasing in the volatility of consumption growth. This

implies that the long-run risk framework predicts counter-cyclical Sharpe ratios; that is for bad

TCampbell and Hentschel (1992)), Glosten, Jagannathan, and Runkle| (1993), and |Brandt and Kang| (2004), among
others document the volatility feedback effect; that is, return innovations are negatively correlated with innovations
in market volatility.

8Time aggregation is an important mechanism for parameter and state inference. Bansal, Kiku, and Yaron| (2012b)
explicitly consider time aggregation of variables. They find that time aggregation can affect parameter values and
they provide evidence that ignoring time aggregation leads to false rejection of the LRR model. Earlier papers that

account for time aggregation in estimation in asset pricing context include [Hansen and Sargent| (1983) and [Heaton
(1995).



times (high values of the volatility of consumption growth) the Sharpe ratios are high and for

good times, (low values of volatility of consumption growth) the conditional Sharpe ratios are

low, consistent with the habit formation model of Campbell and Cochrane| (1999)).

Moreover, Egs. @D, and characterize the expected return, volatility and Sharpe
ratios of a buy and hold strategy over K time units. These equations define the term structure of
risk premia, volatility, and Sharpe ratios of the market portfolio. Moreover, by evaluating Eqgs.
@ and in the unconditional value of the volatility of consumption growth, o2, we obtain
expressions for the unconditional moments of cumulative returns. Similar expressions can be
obtained for the cumulative return moments of the risk-free instrument and market portfolio.

Details about the derivations are described in Appendix [C}

4 Simulation Exercises

In this section, I conduct a simulation study in the spirit of Beeler and Campbell (2012). The

objective is to simulate equity returns from the LRR model at a monthly frequency, and then
time aggregate them to obtain annual estimates of returns, volatilities and Sharpe ratios. 1

explain the simulation exercise as follows.

First, I generate four sets of independent standard normal random variables and use them
to construct monthly series for consumption, dividends and state variables using the state-space
model in Eq.ﬂ Next, I construct annual consumption and dividend growth by adding twelve
monthly consumption and dividend levels, respectively, and then take the growth rate of the
sum. The log market returns and risk-free rates are the sum of monthly values, while the
log price-dividend ratios use prices measured from the last period of the year. As the price-
dividend ratio in the data is divided by the previous year’s dividends, the price-dividend ratio
in the model is multiplied by the dividend in that month and divided by the dividends over the

previous year.

As in BY, BKY and Beeler and Campbell (2012, negative realizations of the conditional

variance are censored and replaced with a small positive numberm I also retain sample paths

along which the volatility process goes negative and is censoredlzl Since the volatility is highly
persistent, it is quite likely to have negative values for the conditional variance; indeed,

9The frequency is consistent with the parameters calibrated by BY and BKY, which are provided in monthly terms.

'“The number is (10~'*) and is consistent with the simulation exercise of [Beeler and Campbell (2012).

HAn alternative approach is to replace negative realizations with their absolute values, as in |[Johnson and Lee
(2012).
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and Campbell (2012)) report that under the BK calibration less than 1% of the volatility simu-

lations are negative for a sample of 100,000 simulations. Each simulation is initialized from the

steady-state values and run for a "burn-in" period of ten years.

4.1 Predictive Regressions

The conditional moments of market returns as well as the Sharpe ratio are unobservable. A
common approach that has been applied in the empirical literature to circumvent this issue is
to project excess stock returns series on a predetermined set of conditioning variables, such as

economic or financial indicators observed by the econometrician.

Empirical studies differ in the conditioning information used in projection of excess returns.
Among the most commonly used predictor variables are the price-dividend ratios (Fama and
[French| (1988al); Campbell (1991); Hodrick (1992))), short-term interest rates Fama and Schwert|
(1977); |Campbell (1991); [Hodrick| (1992); |Ang and Bekaert| (2007))), term spreads and default
spreads (Fama and French| (1988a)), book market ratios (Lewellen| (1999)); Vuolteenaho| (2000)),

proxies for consumption-wealth ratio (Lettau and Ludvigson| (2001a)b))), and latent factors ob-

tained from large data sets (Ludvigson and Ng (]2007D)E| Expected returns are calculated by

regressing realized returns on the set of predictors and taking the fitted values as estimates.

Conditional volatility may also be measured by a projection onto predetermined condition-
ing variables, taking the fitted value from this projection as a measure of conditional variance or

conditional standard deviation. This type of modeling is commonly used; for example

Schwert, and Stambaugh! (1987) use a time-series model of realized variance to model the con-

ditional variance.

Within the set of techniques to measure conditional volatility by a projection onto prede-
termined conditioning variables, three approaches are common. One is to take the squared
residuals from a regression of excess returns onto a predetermined set of conditioning vari-
ables and regress them on to the same set of conditioning variables, using the fitted values
from this regression as a measure of conditional Varianceﬂ Alternatively, volatility can be
estimated using high-frequency return data, commonly referred to as realized volatility. This
is an ex-post measure that consists of adding up the squared high-frequency returns over the

period of interest. The realized volatility is then projected onto time ¢ information variables

Lettau and Ludvigson| (2010) and (Goyal and Welch! (2008) provide a comprehensive review of predictive variables
commonly used in the literature.
13|Campbell| 41987[) and |Breen, Glosten, and J agannathan| (]1989[) apply these methods in the predictability literature.
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to obtain a consistent estimate of the conditional variance of returnlel The third approach
estimates conditional volatility of excess stock market returns by specifying a parametric form
for the conditional volatility, such as the GARCH type of models, or stochastic VolatilityH The
volatility estimates are then obtained from the history of observed returns. For this part of the
paper, I focus on the second type of methodology to calculate conditional volatilities of stock

returns by projecting the sum of squared monthly returns on a set of predictors.

As for the conditional Sharpe ratio, a standard measure is the ratio of the estimated expected
excess return to the estimated volatility, both obtained from separate projections. This approach
has been taken by Kandel and Stambaugh| (1990), Tang and Whitelaw (2011) and |[Lettau and|
Ludvigson| (2010), among others.

I model the the conditional moments of annual returns as follows:

Ei [Rig1 — Res1] = XiBu, (12)
Var, [Rt+1 - Rf,t+1] = XiBh, (13)

where X; is the set of predictor variables observed at time ¢ and R;y1 — Ry41 is the annual
excess return on the market. I assume that the predictor variables available at time t are
the price-to-dividend ratio, the current excess returns and the risk-free rate, constructed in an

annual basis.

The regression equations that correspond to and are

Riy1 — Rpp1 = XiBu+ept, (14)
Vi1 = XiBn+enitt, (15)

where R; — Ry is the annual excess return on the market portfolio and v; is the realized variance
for year t. The annual excess return is calculated as the sum of the monthly excess log-returns,
while the realized variance is the sum of the squared monthly excess log-returns. Both sums are

calculated within the same year.

Based on the information available at time ¢ and the parameter estimates from and

14This approach is taken by French, Schwert, and Stambaugh! (1987), Schwert| (1989), Whitelaw (1994), Ghysels,
[Santa-Clara, and Valkanov] (2006)), [Ludvigson and Ng| (2007), Lettau and Ludvigson| (2010) and [Tang and Whitelaw
(2011).

BFrench, Schwert, and Stambaugh| (1987), Bollerslev, Engle, and Wooldridge| (1988) and (Glosten, Jagannathan,|
and Runkle| (1993) have applied this approach in the predictability literature.

12



, the conditional Sharpe ratio is calculated as follows:

(16)

where BM and B » denote the OLS estimates for 3, and 3 respectively

Figure [1] shows the results of a simulated path of annual returns. Each simulation has 100
annual observations of returns. Panel A shows the time series of expected returns calculated from
an OLS regression, Panel B shows the conditional variance estimated from an OLS regression
and Panel C contains the conditional Sharpe ratio estimates using the fitted values from the
conditional mean and conditional volatility from panels A and B. Finally, Panel D displays the

time series of annual Sharpe ratios implied by the BY model. These are obtained by evaluating

Eq. in K = 12.

[ Insert Figure about here ]

For this specific simulation, the standard deviation of the Sharpe ratio estimates is 3% while
the standard deviation of the model Sharpe ratio is 17%. Moreover, the correlation coefficient
between the Sharpe ratio estimates based on OLS methods and the Sharpe ratio implied by the
model is 7.9%.

The use of artificial data from a fully specified economy is important because it allows the
economic reasons that drive the variation in Sharpe ratios to be isolated. In the first case,
the variation in the Sharpe ratio is driven by the volatility of consumption growth. In the
second case, the volatility of the Sharpe ratio is driven by consumption risk and measurement
error caused by the OLS estimation method. In order to verify the robustness of my results, I
repeated the previous exercise 100,000 times via Monte Carlo simulations with sample periods
of length 100 years. Table 2] reports the median moments implied by the simulations of the BY
calibrations of the LRR calibrations. I look at the empirical first and second moments and at
the empirical Sharpe ratios constructed via OLS methods and compare them with the median

first and second moments as well as the Sharpe ratios implied by the model.

[ Insert Table about here ]

From Table [2, we learn that the level of expected returns and volatilities implied by the LRR

model are well captured by OLS techniques. Indeed, the difference between expected returns

16This definition of Sharpe ratio includes the Jensen’s adjustment due to log-returns. However, my results are robust
if the Sharpe ratio is defined as the ratio of expected returns to conditional volatility.
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and the LRR model counterpart is almost indistinguishable. As for the volatility estimates, OLS
techniques do a good job in matching the mean level as well as standard deviation. However,
there are some differences worth noting. The standard deviation of the risk premia calculated
with OLS techniques is 3.01%, while the standard deviation implied by the model is 0.87%.
That is, the standard deviation estimated via OLS methods is more than three times the true
standard deviation. Moreover, the median of the correlation coefficient between the risk premia
and its OLS estimate is 0.52%. A more serious discrepancy is observed in the estimates of the
conditional Sharpe ratio. The model implies a median annual Sharpe ratio of 33.33% while the
estimates obtained with projection techniques is 26.45%; the standard deviation of the Sharpe
ratio calculated regressions is 15.82%, while, the value implied by the model is 3.53%. The
correlation between the "true" Sharpe ratios implied by the model and its OLS estimates is
0.39%.

We learn from this simulation exercise that the use of fitted moments as proxies for the
unobserved conditional mean and volatility of stock returns has some obvious drawbacks. First,
the dynamics of the conditional mean and volatility are determined by the joint conditional
distribution of the first-stage predictors. Thus, with any model misspecification the dynamics
of the fitted moments would not need to correspond to the dynamics of the true moments. Even
when the predictive models for the conditional mean and volatility are well specified, the effect of
errors in variables, which are induced by the first stage-regressions, is not trivial to quantify and
has an important effect in the Sharpe ratio volatility estimates. Moreover, OLS methods do not
account for time-varying observations or time-varying information sets; therefore OLS methods
are not robust to structural changes. In that sense, an econometric technique that accounts for
such deficiencies may be a good approach for Sharpe ratio estimation and its dynamic behavior.

Filtering techniques are able to overcome these issues.

4.2 Filtering and Estimation

Let yi11 = Tm+1 — rfe4+1 be the continuously compounded monthly excess return. The time-

series dynamics of .41 is represented by
Yer1 = pe + M1 with g0 ~ N (0,1), (17)

where p; and s represent the expected return and conditional volatility. Under the LRR model,

these are given by
e = Eo + Ero7, (18)

and
M\ = Do + Dio?. (19)
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According to Eq. , the evolution of o7 is represented by

ol = T H4v (O'tz — 62) + owWit1, (20)

W1 ~ di.d. N(0,1),

and the covariance between the observed market excess return, y;y1, and the innovation to the

volatility process, w41 is given in Eq. .

4.2.1 Filtering

Egs. through make up a state-space model. In the terminology of state-space models,
Eq. is the measurement or observation equation and Eq. is the transition or state
equation. I assume that af is a latent variable; therefore, both the conditional mean and
volatility of market returns are unobservable. I also assume that I am able to observe the full
history of realized returns. To draw inferences about the dynamic behavior of o? as well as

return conditional moments, we need to solve a filtering problem.

The solution to the filtering is the distribution of the latent variable o7 conditional on
the history of observed returns. From Egs. @D through , we learn that expected returns,
volatilities and conditional Sharpe ratios can be estimated based on this conditional distribution,
for any holding period. Unfortunately, the filtering problem generated by the LRR model is
not standard because of the nonlinearities in the measurement equation as well as the non-zero
covariance between the observation and transition equations. As a result, the standard Kalman
filter (designed for linear Gaussian state-space models) cannot be used directly in the estimation
of the model. I instead rely on nonlinear filtering methods to estimate the distribution of o7,

conditional moments of market excess returns and market Sharpe ratios.

Particle Filters

I estimate the latent process o7, conditional moments and Sharpe ratios via particle filters. The
particle filter is a nonlinear filter which works through Monte Carlo methods. The conditional
distribution of the state variables is replaced by an empirical distribution drawn by simulation.
This method does not require the explicit computation of Jacobians and Hessians, and captures
the conditional distribution of the state variable accurately up to a prespecified accuracy level
that depends on the number of simulations chosen by the researcher. To implement the particle
filter, it is necessary to specify the state-space modelﬂ A brief description of the particle filter
and its implementation is given in Appendix

17 Doucet, de Freitas, Gordon, and Smith| (2001) and (Crisan and Rozovskii (2011) describe in detail the properties
of the filter and its practical implementation, and [van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez
(2012)) apply the method to estimate a dynamic stochastic general equilibrium model with a particular focus on the
term structure of interest rates.
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I test the accuracy of the filtered estimates as follows. First, I simulate a path of annual
excess returns according to the calibrations by BY. Given the simulated excess returns, I numer-
ically construct the conditional distribution of the volatility of consumption growth, o2, using
Egs. to as well as the original calibrations by BY. Once, the conditional distribution
of the volatility of consumption growth is obtained, I estimate risk premia, conditional vari-
ances and Sharpe ratios according to Egs. @ to . Figure [2| shows a sample simulation of
the volatility of consumption growth, conditional moments and Sharpe ratios along with their
filtered counterparts. In panel A, I show a path for the volatility of consumption growth; panels
B and C show the simulated expected returns and their volatility; panel D shows the simulated
annual Sharpe ratio with its filtered estimates. For this specific simulation, the correlation coef-
ficient between the simulated volatility of consumption growth and its filtered value is 60%. As
for the expected returns, volatilities and Sharpe ratios, the simulated values have a correlation

coefficient above 64% with their filtered counterparts.
[ Insert Figure about here |

A possible concern is that filtering is commonly thought of as a smoothing technique, and
therefore, if the state variable to be filtered is too volatile, a filtering technique will reduce
such volatility and the unconditional moments of interest may not reflect the true state variable
dynamics. However, filtering techniques are robust enough to provide accurate estimates even
if the true state variable to be filtered is volatile. This is due to the fact that filtered estimates
are conditional expectations of the state variables. To evaluate the unconditional moments, it
is necessary to account for this fact; thus, I calculate the unconditional mean and variance of

the state variables according to the properties of the law of iterated expectationsﬁ

To verify the robustness of my results, the simulation exercise was repeated 1,500 times. For
each simulation, I obtain time series of expected returns, volatilities and Sharpe ratios as well as
their filtered counterparts. I then calculate the unconditional means, variances and correlations
between the simulated and filtered series. The results are reported in Table [3] In general, the
filters do a good job of capturing the unconditional moments of expected returns, volatilities
and Sharpe ratios. Overall, the moments estimated via filtering methods are precise match the

true values in at least two decimal places.
[ Insert Table about here ]

We learn from these simulation exercises that filtering techniques are better able to cap-

18The unconditional variance estimate comes from the following identity, which relates conditional and unconditional
variances: Var[X] = Var[E[X|Y]] + E[Var[X|Y]].
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ture the dynamic behavior of the conditional moments and Sharpe ratios than OLS methods.
Nonetheless, these filtered estimates rely on a number of assumptions: the state-space model
is well specified; realized returns are a noisy measure of expected returns and the volatility of
consumption growth is the only unobservable state variable of the system. However, the re-
searcher has full knowledge of its dynamics as well as the functional forms of expected returns
and variances. Finally, I assume that the econometrist has full knowledge of the parameter val-
ues and the only problem that she faces is the estimation of conditional moments based on the
time series of observed returns. In contrast, OLS methods rely on nonstationarity assumptions
of the state variables and predictors. By using OLS methods, we approximate expected returns
and variances with a linear projection on a set of exogenous predictors and can potentially face
a number of well-known econometric problems, such as omitted variables or misspecification.
For clarity of exposition, I collect all parameters that define the state-space model into a single
parameter vector . Fach parameter vector characterizes a model; hence, conditional distribu-
tions and filtered state variables. As a result, an estimation problem needs to be solved and

will be explained in detail as follows.

4.2.2 Estimation

The previous results were obtained by assuming that the set of parameter values is known.
This assumption is quite unrealistic, because in reality the researcher is uncertain about the
true parameter values. A natural way to approach this issue is by estimating the vector of
parameters from the observed data. A common technique for nonlinear dynamic models is
quasi-maximum likelihood estimation (QMLE)H This approach is discussed in Winschel and
Kratzig (2010) and Romero (2012). Details about its implementation are described in Appendix
[El
[ Insert Figure about here |

I conduct a simulation exercise to better identify the effect of parameter estimation within the
filtering exercise. First, I simulate a time series of excess returns from the LRR model, and
then I estimate the parameter values via quasi-maximum likelihood methods using the state-
space representation implied by the LRR model. The parameter estimates are then used in the

filtering estimation procedure.

A sample simulation is illustrated in Figure Panels to compare conditional
Sharpe ratio estimates with their true values. Panel shows the empirical estimate obtained
via OLS methods, Panel |3(b)| displays Sharpe ratio estimates calculated with filtering methods

19Some examples are |(Campbell, Sunderam, and Viceira| (2012); fvan Binsbergen and Koijen| (2011) and |Calvet,
Fisher, and Wu/ (2010]).
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by assuming that the true parameter values are known and Panel contains the filtered

Sharpe ratios using the parameter estimates obtained via quasi-maximum likelihood methods.

For this specific simulation, the time-series average of the model-implied Sharpe ratio is
33%, while the average Sharpe ratio estimates obtained with filtering techniques are 34% and
36%, where the first is obtained by assuming that the true parameter values are known and the
second is obtained with the parameter estimates from observed returns. Finally, the average
Sharpe ratio obtained with OLS methods is 25%. An explanation for this difference is the
model misspecification that is generated from running OLS regressions for expected returns and
volatility calculations on a set of predetermined variables. The volatility estimates obtained via
filtering methods are 5% and 6%. My results are similar to the estimates obtained from the
true simulated data, which is 4%. In contrast, OLS methods deliver a Sharpe ratio volatility
estimate of 15%. This exercise illustrates the effect of parameter estimation on the volatility of
Sharpe ratios. I show evidence that filtering methods deliver Sharpe ratio volatility estimates

consistent with the true model implied values, even if parameter values have to be estimated.

4.3 Other Models

Recent consumption-based asset pricing models have made substantial progress in explaining
many asset pricing puzzles across various markets. Even though such models are not often used

to study Sharpe ratios or their volatility, they do make theoretical predictions about their values.

In standard asset pricing models, the market Sharpe ratio is constant (Sharpe| (1964); Lintner|
(1965)); Lucas| (1978)) and Breeden| (1979)) or has negligible variation (Mehra and Prescott| (1985)
and ) Habit formation preferences can help to capture the counter-cyclicality of the
risk premia (Constantinides (1990); |Abel| (1990) and |Campbell and Cochrane (1999))) as well as
other features of macro-economic outcomes over the business cycle (Jermann (2010)). Bansal
and Yaron| (2004)) combine the preferences of Epstein and Zin| (1989) with stochastic volatility

of consumption growth and generate time variation in the conditional volatility of the SDF.

Other studies have found different channels for time variation in risk premia, such as differ-
ences in risk aversion (Chan and Kogan (2002), (Gomes and Michaelides (2008]), Bhamra and|
(2010)); rare disasters (Rietz (1988)); Barro| (2006} [2009) and [Wachter| (2012))); incom-
plete markets (Constantinides and Duffie| (1996]), |Garleanu and Panageas| (2011)); participation
constraints, (Basak and Cuoco| (1998), Guvenen| (2009), |Chien, Cole, and Lustig (2012)); in-
vestment shocks (Papanikolaou/ (2011))) and heterogeneity in the frequency of shocks to funda-

mentals (Calvet and Fisher| (2007)). A brief summary of the aforementioned models and their

asset pricing implications are shown in Table [4]
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[ Insert Table about here |

The asset pricing implications of the models shown in Table [4] provide a general idea of the
model-implied variability of Sharpe ratios. Indeed, this variability could be used as a metric to
better assess the performance of a model. For example, an asset pricing model with constant
Sharpe ratios would fail in explaining the observed variation in empirical Sharpe ratios. On the
other hand, a model that predicts highly volatile Sharpe ratios may exceed the true variability
observed in the data. Therefore, the variance of Sharpe ratios can be used as a metric to better
assess theoretical asset pricing models. This metric would be in the spirit of the entropy measure
recently proposed by Backus, Chernov, and Zin| (2012) and studied in Martin| (2012).

As a robustness check of the variability generated by OLS methods to calculate Sharpe
ratios, I performed a second simulation exercise based on the external habit formation model
by |Campbell and Cochrane (1999). A brief description of the model and a brief overview of the

results are presented below.

4.4 External Habit Formation Model

In the external habit formation model of Campbell and Cochrane| (1999), the consumption
dynamics are the same as in the standard Lucas model; that is consumption growth rates are
assumed to be independent and identically distributed. Furthermore, the agent is assumed to
have external habit formation preferences. The habit level is assumed to be a slow-moving and
heteroscedastic process. The heteroscedasticity of the habit process, the sensitivity function,
can be chosen so that the real interest rate in the model is constant or linear in the habit.
Further details can be found in Appendix

I use the same calibrated monthly parameters as those in (Campbell and Cochrane (1999) to
simulate returns from the model and compute annual expected returns, volatilities and Sharpe
ratios using standard OLS techniques. I compare these results with the numerical values implied
by the model. Consistent with my previous results, I find that the Sharpe ratios based on

standard OLS methods are at least twice more volatile than the model-implied variability.
[ Insert Figure about here ]

The results are plotted in Figure Panel A displays the Sharpe ratio estimates based on
OLS methods, while Panel B displays the values of the true Sharpe ratios. Clearly, the Sharpe
ratio estimates based on OLS methods are more volatile than the values implied by the habit

formation model.
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5 Sharpe Ratios in Reduced Form Models

The use of data simulated by means of theoretical models helps to better identify the economic
reasons that drive the time-series variation. An alternative form of analyzing returns is via
reduced form models, which are statistical models that do not impose any economic structure.
These models aim to better describe historical data. Moreover, they do not rely on arbitrary

predictors and are not subject to the effects of errors in variables or misspecification.

In this section, I introduce the nonlinear latent VAR representation proposed in [Brandt
and Kang| (2004), in which the first and second conditional moments are considered latent
variables identified from the history of returns. In this setup, the Sharpe ratio and its dynamics
are obtained endogenously as the ratio of the conditional moments of excess returns. The
framework is general enough and can be extended to a setup that includes flexible correlation

structures and exogenous predictors.

5.1 Brandt and Kang (2004)

Let y; be the continuously compounded excess returns with time-series dynamics represented
by
Y = phi—1 + Ap—16¢ with g, ~ N(O, 1) (21)

where p;—jand A1 represent the conditional volatility of the excess returns. In addition, it is
assumed that the conditional mean and volatility are unobservable and that they follow a first

order VAR process in logs:

1 1 _
PR gAY g withoge = | T | ~N(0,D), (22)
In A\ In A¢—q M2t
where
4
J - A= an ez | o
I da as a2
bi1 b1 )
Y = with 512 = 521 = pV bnbgg. (23)
I ba1  bao

Following Hamilton| (1994)), if the VAR is stationary, the unconditional moments for the mean
and volatility are given by

In g
In A\

] =(I-A)""4d (24)
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and

1
vee [cov | ) = (1 — (A® A) L vec (D) (25)
ln)\t

where ® represents the Kronecker product.

The key elements of the return dynamics presented Eq. are the transition matrix A
and the correlation coefficient p. The diagonal elements of A capture the persistence of the
conditional moments, and the off-diagonal elements reflect the intertemporal feedback between
the conditional volatility and the conditional mean. The correlation coefficient p captures
the contemporaneous correlation between the innovations to the conditional moments. This

parameter is of considerable importance since it captures the risk-return trade—offF_Ul

The model in Eq. generalizes the permanent and temporary components of
(1988b)) and the standard stochastic volatility model. The equation for the conditional

mean is

Inp =dy + a1 Inpe—1 + a2 ln \p—1 + m1¢, where n1¢ ~ N (0,b171) . (26)

If @12 = 0, the dynamics of the conditional mean is similar to the temporary component as in

Lamoureux and Zhou (1996]). Now, the equation that describes the conditional volatility is

In A =do+ a1 Inpre—1 + ageIn X1 + 2, where 9o ~ N (0, b22), (27)

and corresponds to the standard stochastic volatility model; in particular if as; = 0, Eq. is

the standard stochastic volatility model as in/Andersen and Sgrensen| (1996|) and Kim, Shephard,|
and Chib (1998). Finally, we learn from Eq. that the unconditional variance is determined

by the variance-covariance matrix > and the matrix A. For identification purposes, I assume

four different specifications for the transition matrix A. First, in model A, I consider the case
in which the conditional mean and volatility evolve as in Egs. and . Models B and C
consider aj2 = 0 and ag; = 0, respectively, allowing for the model of permanent and temporary
component in the first case, and the standard stochastic volatility model in the second case.

Finally, model D considers the case in which a3 = a9; = 0.

An interesting property is the nonnegativity of expected returns and volatilities. This non-

negativity of the conditional mean guarantees a positive risk premium, as suggested in

20Most asset pricing models predict a positive relationship between the market’s risk premium and conditional
volatility ) However, the empirical evidence on the sign of the risk-return relation is inconclusive.
Indeed, some studies find a positive relation (e.g. [Scruggs| (1998]),|Ghysels, Santa-Clara, and Valkanov|(2005)), Lundblad|
(2007), Ludvigson and Ng| (2007)) and [Pastor, Sinha, and Swaminathan| (2008))), but others find a negative relation (e.g.
Campbell (1987), Glosten, Jagannathan, and Runkle| (1993), [Harvey| (2001)), Lettau and Ludvigson| (2010) and Brandt]
and Kang ) Others have shown through theoretical studies that the intertemporal mean-variance relationship
may not be positive or negative (e.g. Whitelaw| (2000) and |/Ang and Liu (2007)).
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(1980), and has been used by Bekaert and Harvey| (1995) and [Jacquier, Johannes, and Polson
(2007), among others. The log-normality specification for the volatility is consistent with |An-
dersen, Bollerslev, Diebold, and Ebens (2001 and |Andersen, Bollerslev, Diebold, and Labys
(2003), which show that the log-volatility process can be well approximated by a normal distri-
bution, and with Taylor| (2008), who proposes to model the logarithm of volatility as an AR(1)

process.

5.2 Implied Sharpe Ratio

The latent VAR implies a conditional Sharpe ratio of the form

g+ A7 /2

SR,
t N

(28)
where u; and A; are the conditional mean and volatility of stock returns@ It follows that the
Sharpe ratio is stochastic if the innovations that affect both the numerator and denominator in
Eq. are stochastic and do not cancel each other out. Moreover, the Sharpe ratio is time-
varying due to the mean reversion of the two conditional moments. The distribution of the
Sharpe ratio corresponds to the sum of two correlated log-normal distributions, which is not

standard.

5.3 The data

I study quarterly returns on the value-weighted index market portfolio from CRSP. Excess
returns are calculated by subtracting the quarterly yield on a three-month T-bill from the
corresponding stock return. I use this yield instead of the monthly yield due to the idiosyncratic
variation documented in Duffee, (1996). The predictors are the CRSP dividend-price ratio (d-
p), calculated as the log-ratio of the CRSP dividends to the price level of the CRSP value-
weighted stock index; the relative bill rate (RREL), which is the difference between the three-
month treasury bill and its four-quarter moving average; the term spread (T'RM), the difference
between the ten-year treasury bond yield and the three-month treasury bill; the default spread
(DEF), the difference between the BAA corporate bond rate and the AAA corporate bond rate
and the consumption-wealth ratio proxy (cay)F_ZI The RREL, TRM and DEF are obtained

from the Federal Reserve statistical release. Data on the dividend-price ratio is taken from

21The squared term in the numerator comes from a Jensen’s adjustment for log-returns.
22 These predictors are used in the predictability literature. See Goyal and Welch| (2008) and Lettau and Ludvigson
(2010) for details.
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CRSP and the time series of cay is taken from Sidney Ludvigson’s Website@ All data are
quarterly from the period April 1953 to December 2011.

5.4 Parameter Estimates

The model in Eqs. and is nonlinear since the first equation is nonlinear in the state-
variables. The parameters are estimated via quasi-maximum likelihood methods and are shown
in Table ] The first column corresponds to the estimates of model A, the second column shows
the estimates for model B, and the third and fourth columns contain the parameter estimates for
models C and D, respectively. Given the frequency of returns, expected returns are persistent
since the estimates for aj; range from 0.6727 to 0.7204@ The conditional volatility is more

persistent than the conditional mean, for all model specifications.
[ Insert Table about here |

The parameter estimates of the models A through D show evidence of a strong and negative
risk-return trade-off, measured by the correlation between the innovations to the conditional
mean and the volatility of excess returns. The estimates range from -0.1760 to -0.7995, for
both the constrained and unconstrained representations, and are statistically significant. This
finding is consistent with the negative risk-return relationship found in|Brandt and Kang] (2004)),
Campbell and Hentschel (1992) and |Campbell (1987). The negative sign of the correlation
coefficient between the conditional mean and the volatility of returns amplifies the variability of
the Sharpe ratio, whereas a positive correlation between expected returns and volatility makes

Sharpe ratios less variable than its mean or even constant.

The estimates show that there is more variation in the mean than in the conditional volatil-
ity, since the conditional variance of the innovations to the conditional mean, b1, differs sub-
stantially from that of the innovation to the conditional volatility, bos. The off-diagonal ele-
ments of the transition matrix A are significant. However, the values for a1 are similar across
models, while the values for aqo differ. The differences in signs of a12 and ag; are consistent
with the results of |Whitelaw (1994) and Brandt and Kang (2004), which state that the cross-

autocorrelations between the conditional mean and volatility offset each other through time.

23] thank Sidney Ludvigson for making the time series data for cay available. This variable is calculated in a
quarterly basis. Source: http://www.econ.nyu.edu/user/ludvigsons/
24These values correspond to a monthly persistence of roughly 0.87 to 0.89.
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5.5 Expected Returns, Volatilities and Sharpe Ratios

Given the parameter estimates in Table [5], I estimate expected returns, volatilities and Sharpe
ratios via particle filtering. The left column of Figure [5] presents the filtered estimates of
quarterly expected returns (first row), volatility (second row) and Sharpe ratios (third row).
Each plot also shows in vertical bars the NBER recession dates. It is clear that the conditional
mean, volatility and Sharpe ratio are time varying. The quarterly mean has a standard deviation
of less than 1% and it varies from 1% in the third quarter of 1974 to 3% in the last quarter
of 2003. The quarterly volatility has a standard deviation of 2% and ranges from 7.3% to
11.6%. Expected returns revert more quickly to their unconditional mean than do conditional

volatilities, and this is consistent with the estimates of a;; and ass.

Quarterly Sharpe ratios are displayed in the last row of the first column. The Sharpe
ratio rises from the peak to the trough of the recession dates in the sample, and is consistent
with the empirical results documented by |Lustig and Verdelhan (2012), |Tang and Whitelaw
(2011) and [Lettau and Ludvigson (2010). This countercyclical variation of the Sharpe ratio
is also consistent with the habit formation models (Constantinides (1990) and |Campbell and
Cochrane (1999)). Intuitively, at the peak of the business cycle, consumers enjoy consumption
levels far above their "habits." As a result, a low Sharpe ratio, or low reward per unit of risk,
is required for a consumer to invest in the stock index at the peak of the cycle, in contrast to
the trough of a cycle, where consumption levels are closer to those of the habits, which makes
consumers more relative risk averse. For an investor willing to invest in the trough of the cycle,

the rewards per unit of risk or Sharpe ratios should be substantially high.

[ Insert Figure about here ]

5.5.1 OLS estimates

I calculate expected returns, volatilities and Sharpe ratios based on OLS techniques for com-
parison purposes. Table [0] presents the estimates from OLS regressions of quarterly realized
excess returns and excess log-returns from the first quarter of 1953 to the last quarter of 2011.
The results are generally consistent with those reported in the predictability literature. There is
no substantial difference between the regression estimates obtained by using excess returns and
excess log-returns. At a one-quarter horizon, cay and RRE L show a consistent predictive power
for excess returns. Indeed, cay alone explains 3% of next quarter’s total variability. Adding
the lagged value of excess returns, cay, d — p, RREL and TRM explains 8% of the quarter’s
variation in the next quarter’s excess return. The R—squared of 8% for log-returns is lower than

the values reported in previous studies, but the sample, which includes the 2007-2008 financial

24



crisis, may account for this result.
[ Insert Table [f] about here |

The results for the volatility equation are presented in Table [7] In this representation, the
lagged volatility, d — p, TRM and DEF are significant. The positive serial correlation in
realized volatility reflects the autoregressive conditional heteroskedasticity of quarterly returns.
The lagged value of volatility alone explains 37% of next the quarter’s excess return volatility.
Lagged volatility values, cay, d — p, RREL, and TRM explain altogether 41%. Finally, the
high R—squared value of 43% in the full volatility equation reflects that realized volatility is

much more predictable than excess returns.
[ Insert Table about here |

Empirical moments of expected returns, volatilities and Sharpe ratios are displayed in Table
Bl The first set of estimates is calculated based on OLS regressions of quarterly realized log-
returns for the CRSP value-weighted index on lagged explanatory variables. The second set of
estimates is based on the reduced form model by Brandt and Kang| (2004)), in which the condi-
tional mean and volatility of stock returns are treated as latent variables. This representation

guarantees positive values for the conditional mean and volatility of excess returns.
[ Insert Table about here |

As in the simulation exercises described in section 4, I find differences worth noting among the
estimates. First, expected returns and volatilities calculated via OLS have a quarterly standard
deviation of 2%, while the standard deviation of the filtered estimates is 1%. Filtered volatilities
are higher, on average, than the ones obtained with OLS methods and are more autocorrelated.
The autocorrelation of expected returns obtained with OLS methods is 81%, in contrast with
the one estimated from the filtered series, which is less than 59%. This is not surprising, since
the regressors used for its estimation are highly persistent. The autocorrelation of the filtered

estimates is consistent with the estimated value of ai1.

As for the Sharpe ratio estimates, there are major differences worth noting. First, the av-
erage quarterly Sharpe ratio estimated via filtering is 26% while the OLS estimate is 30%. As
for the standard deviation estimates, the difference is quite substantial. For the OLS estimates,
the standard deviation is 42%, which is similar to the 45% reported by [Lettau and Ludvigson
(2010), while the standard deviation of the filtered Sharpe ratio ranges from 5%. A potential
explanation of this difference is the use of standard OLS techniques for its estimation. The

reduced form representations do not rely on predetermined conditioning variables to estimate
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conditional moments; the state variables are identified from the history of returns whereas stan-
dard OLS techniques generate fitted moments from a set of predictive regressions as proxies
for the unobservable conditional mean and volatility. The fitted moments depend on the joint
distribution of the predictors; therefore, any model misspecification would generate fitted mo-
ments that do not correspond to the true dynamics of the conditional mean and volatility, and
as a result, the Sharpe ratio dynamics. Another important issue is that the ratio of the fitted
moments does not adjust for the correlation between expected returns and volatility of stock

returns, whereas filtering techniques do.

5.5.2 Alternative Reduced Forms

For comparison purposes, I also analyze an unconstrained version of the representation of Brandt

and Kang| (2004). The excess returns have time-series dynamics of the form
Yt = te—1 + Ai_1&¢ with g ~ N (0, 1) , (29)

where p;—jand A1 represent the conditional volatility of the excess returns. In addition, it is
assumed that the conditional mean and the log-volatility are unobservable and that they follow

a first order VAR process of the form

27 —d+ A Mt—1
In A\ In A\t

+ Nt with ne ~ N (0, Z) y (30)

where d, A and X are defined as in Eq. . The main difference between the model rep-
resentation by Brandt and Kang (2004) and Eqs. and is that expected returns can
potentially be negative, as in Lamoureux and Zhou| (1996). As in the previous model, I consider
four model specifications for the matrix A. The covariance matrix, ¥, has the same structure as
Eq. . The sign of the correlation coefficient between the conditional mean and the volatility
of excess returns has the same sign as the correlation between the conditional mean and the

log—volatilityﬁ
[ Insert Table [0 about here |

Quasi-maximum likelihood estimates of the model with an unconstrained risk premia are
shown in Table 9] Under all model specifications, the parameter estimates, are similar to the

estimates of the first model. An important difference is that the estimates of the off-diagonal

ZFrom Stein’s lemma, we have that the conditional covariance between excess returns and the conditional volatility
is covi—1 (i, Ae) = Ei [Ae] - cove—1 (pe,In A) . Thus, the sign of the correlation coefficient between the conditional
mean and the volatility of stock returns is the same as the conditional correlation of the conditional mean and the
log-volatility of returns.
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elements a1 and ao; are negative, although aqo is not statistically significant.

The right column of Figure [p| displays the filtered estimates of conditional moments and
Sharpe ratios for the model with an unconstrained risk premia. The main difference between
the constrained and unconstrained representations is that expected returns can take negative
values; indeed, expected return estimates took negative values for six quarters of the whole
sample. Qualitatively, both latent VAR models show similar dynamic behavior; in fact, the

correlation coefficient between the implied Sharpe ratio estimates is 70%.

5.5.3 Exogenous Predictors

The main advantage of the latent VAR approach by Brandt and Kang| (2004)) is that it allows the
study of the dynamics of the conditional mean, volatility and Sharpe ratios without relying on
exogenous predictors. At the same time, useful information is potentially discarded, since any
correlation structure between predictors and conditional moments is ignored. As a robustness
check, I estimate an extended version of the model in which each moment is a function of the
same exogenous predictors used in the predictive regressions ( cay, d — p, RREL, and TRM).

The model specification is given by

Yo = pe—1 + Ae—16¢ with g, ~ N(0,1), (31)
where
In In
Mol —ava| MM 4 Cay 4o, with g ~ N (0,3), (32)
In oy Inoy_q

where x; denotes the de-meaned vector of predictors observed at date .

Table reports the parameter estimates of the extended model D and also replicates for
comparison the results of model D. The estimates of A and ¥ are similar across the two models.
When I add the exogenous predictors, all the parameter estimates of the base model decrease
in magnitude, which means that the exogenous predictors help explain some of the variation in
the moments that was left unexplained. Finally, the correlation between the innovations to the

mean and volatility decreases in magnitude from -0.7995 to -0.4523, both significant.
[ Insert Table about here ]

In the mean equation of the extended model, the coefficients of cay, d — p, TRM (c11, c12
and c14) are positive and the coefficients of RREL and DEF (c13 and c15) are negative. In
the volatility equation, all coefficients are negative, except for one, DEF. The signs of the

coeflicients are all consistent with the results of the predictive regressions. However, it is impor-
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tant to note that these results are not directly comparable to standard predictive regressions,
since these coefficients correspond to regressions with the conditional moments as dependent

variables.

5.5.4 Comparison

Empirical moments of the different Sharpe ratio estimates are displayed in Table The first,
second and third sets of Sharpe ratio estimates are based on the latent VAR approach by Brandt
and Kang (2004). The first representation is based on Egs. and , while the second
representation guarantees a positive volatility only and is based on Egs. and . The
third representation is an extended version of the first model in which the conditional moments
are positive functions of exogenous predictors and is represented in Eqs. and . Finally,
the last set of Sharpe ratio estimates is based on the conditional moments calculated from OLS

regressions of log-returns on lagged explanatory variables.

[ Insert Table about here |

The results from Table [11] show that the average quarterly Sharpe ratios under the first two
models are 25% and 26%, respectively. The third model implies a quarterly Sharpe ratio of 31%,
while the estimates obtained from OLS methods have a quarterly Sharpe ratio of 30%. The
difference is caused by the set of exogenous predictors included within the estimation procedure.
The first set of results represents the Sharpe ratio estimates based on the set of observed returns,
while the third and fourth correspond to Sharpe ratio estimates using the history of returns
and the set of exogenous predictors. The parameter estimates used in the filtering calculations
depend on the data used in the estimation process. In the first two models, the parameter and
filtered estimates depend on the time series of excess returns, while the last two models depend

on the same series of returns as well as on the set of exogenous predictors.

As for the Sharpe ratio volatility implied by the models, there are some differences worth
noting. The first two models imply a volatility of 5% and 10%, respectively. The difference is
due to the model representation. The first model considers a positive risk premia and the second
does not. Since the second model allows for negative Sharpe ratios, there is more variability. As
for the third representation, the variability is 25%, which is mainly driven by the inclusion of
a set of exogenous predictors that affect the conditional mean and volatility of excess returns.
None of these representations deliver a Sharpe ratio volatility of 42% as OLS methods do. The
main driver of this difference is the use of conditioning information within the estimation process.
In the first two cases, the model representations as well as the history of returns determine the
variability of the Sharpe ratio. In contrast, the set of exogenous predictors that are included in

the estimation process of the third model and fourth model determines a higher variability of
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the Sharpe ratio estimates.

6 Implications for Portfolio Choice

In this section, I discuss a standard model from the portfolio-choice literature and its relation

to the market Sharpe ratio.

6.1 Portfolio Optimization: One Risky Asset

I consider an investor with mean-variance preferences that optimizes the tradeoff between the
mean and the variance of portfolio returns. Two assets are available to an investor at time t.
One is risk free, with return Ry;; from time ¢ to time ¢ + 1, and the other is risky. The risky
asset has simple return R;y; from time ¢ to time ¢ + 1 with conditional mean E; [R;] and
conditional variance o7.

The investor allocates a share a; of her portfolio into the risky asset. Then the portfolio

return is

Ryiy1 = oqRipr + (1 — o) Rppa
= Ry + o (Riey1 — Rygy) -

The mean portfolio return is E; [Ry41] = Ryty1 + o (B [Ri1] — Rfi41) , while the variance

2 2 2

of the portfolio is 03, = ajof.

p

If the investor has mean-variance preferences, then she trades off between the mean and
variance in a linear fashion. In other words, she maximizes a linear combination of mean and

variance with a positive weight on mean and a negative weight on variance,
T 2
max (Et [Rp,t41] — QUpt) -
The solution to this optimization problem is

~ E¢[Rey1] — R
ap = 3 .
YO

(33)

The optimal weight for the stock index coincides with the so-called myopic demand and can be
interpreted as the product of the relative risk tolerance (i.e., inverse of the relative risk aversion)

and the market Sharpe ratio normalized by the volatility of the market returns; that is

_ SR,

= (34)

o7
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We learn from Eq. that for investors with mean-variance preferences, the optimal allocation
in the market portfolio is determined by three elements: the Sharpe ratio of the market portfolio,
the conditional volatility of the market portfolio and the risk aversion parameter. Moreover,
the variability of portfolio weights is determined by the variability of Sharpe ratios and as well

as by the standard deviation of the market portfolio.

Campbell and Viceira) (2002)) derive a similar expression by assuming an investor with power
utility and that the return on an investor’s portfolio is lognormal, with the slight difference that
the optimal weight in Eq. is adjusted by half the variance of the risky asset; that is,

B [rev1] — rper1 +07/2
ot

Qy = (35)

Now I implement the model following the standard plug-in approach; that is, I solve the
optimization problem assuming that the mean and variance of returns are known. Once the
problem is solved, I replace the moments with their estimates obtained via regression or filtering
techniques. For simplicity, I assume that the investor ignores estimation risk while making an

investment decision.
[ Insert Figure [f] about here |

Figure |§| shows the optimal allocations in Eq. using OLS and filtering methods to
estimate conditional moments assuming a risk aversion parameter v = 5. Clearly, the portfolio
weights constructed via OLS methods are more volatile than the ones obtained with the filtered
moments. Indeed, the average portfolio weight under the OLS model specification is 1.27 with a
standard deviation of 2.13, in contrast to the portfolio weight computed with filtering methods,
which is on average 56% with a standard deviation of 12%. Finally, the correlation between the

two weights is 15%.

These results have practical implications for portfolio allocation, especially for an investor
who faces proportional costs by trading the optimal portfolio of an investor with mean-variance
preferences@ As the optimal weight is proportional to the market Sharpe ratio, the percentage
of wealth traded in each period will depend upon the volatility of the market Sharpe ratio. It is
clear that upward-biased estimates of the Sharpe ratio volatility would imply excessive portfolio

rebalancing, and therefore more transaction costs.

26This fact was first noted by De Miguel, Garlappi, and Uppal| (2009)) for performance evaluation.

30



7 Conclusions

In this paper I examine whether estimates of the variability of the Sharpe ratio may be biased
due to limitations of the empirical methodology used in its estimation. I provide evidence that
measurement error in estimated Sharpe ratios helps to explain the Sharpe ratio volatility puzzle.
I further show that this measurement error is caused by the use of standard OLS methods to
estimate the ratio. The empirical question I address is important because many studies have

used the results implied by OLS methods to calibrate the volatility of the market Sharpe ratio.

Based on simulated data from standard asset pricing models, I document that OLS methods
produce Sharpe ratio volatility that is larger than the ratio’s true variability. Using the OLS
approach may also provide conditional moment estimates that do not necessarily correspond to

their true values.

Once I have documented the upward bias in the Sharpe ratio’s variability generated by OLS
methods, I consider if using improved empirical methodologies may better reflect the ratio’s
true variability. To accomplish this goal, I propose filtering methods as a way to better assess
this variation. These techniques explicitly allow for the estimation of time-varying moments by
aggregating the entire history of realized returns in a parsimonious way. Moreover, filtering is
flexible enough to be used with large information sets without relying on exogenous predictors,
while being robust to structural breaks. I also show that filtering techniques better reflect the

true variation of Sharpe ratios even when parameter values need to be estimated.

Motivated by the simulation results, I use real data on excess stock returns to compare the
Sharpe ratio volatility estimates produced by OLS and filtering methods. I find that filtering
methods deliver Sharpe ratio variability estimates that are much smaller than the Sharpe ratio
variability estimates implied from OLS methods. The difference in results from the two method-

ologies arises due to the use of conditioning information within the filtering estimation process.

My findings have significant implications for asset pricing. For example, in a portfolio
allocation setting, the optimal portfolio weight is proportional to the market Sharpe ratio.
Thus, upward biased estimates of the Sharpe ratio volatility would imply excessive portfolio

rebalancing, and therefore more transaction costs.
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Appendices

A Sharpe Ratios in Asset Pricing

Harrison and Kreps (1979)) show that the absence of arbitrage implies the existence of a stochas-
tic discount factor (SDF) or pricing kernel, denoted by M;, that prices all assets in the econ-
omyF_TI More specifically, the conditional expectation of the product of the stochastic discount

factor and the gross asset return (R;) must be equal to one; that is,
E¢ [Miy1Rey1] = 1, (36)

where the conditional expectation is based on the information available at time ¢. Since Eq.(36])
holds for any asset in the economy, it must hold for the one-period risk-free interest rate (Rfi41) ;
consequently, the risk-free rate can be written as the inverse of the conditional expectation of

the stochastic discount factor,
1

Rfit1 = m (37)

Another implication of Eq. is that the expected risk premium on any asset is given by the
negative of the product of the risk-free rate and the conditional covariance of the stochastic

discount factor with the gross return; that is,
Et [Ri+1 — Rpev1] = —Rpr1Covg (Reg1, Myya) - (38)

The conditional Sharpe ratio of an asset at time ¢, denoted by SRy, is defined as the ratio of

the conditional mean excess return to the conditional standard deviation of its return, that is

E¢ [Riy1 — Rppy]
ot [Rer1 — Rypey1]

SR, = (39)

Then, the conditional Sharpe ratio is proportional to the risk-free rate, the volatility of the

pricing kernel and the correlation between the pricing kernel and the return; that is,

E¢ [Ret1 — Ryiy1]
ot [Rt+1 - th+1]

= —Rpi10t [Myy1] Corry [Rega, Miya], (40)

where oy and Corr; are the standard deviation and correlation; respectively, both conditional
on information at time t. The conditional Sharpe ratio of any asset in the economy is time
varying as long as the risk-free rate varies or the pricing kernel is conditionally heteroskedastic;

that is, if oy [My41] changes over time or if the correlation between the stock market return and

27See [Back| (2010) for a detailed and concise explanation.
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the stochastic discount factor is time varying.

Now, the maximum of the right-hand side of Eq. over all returns defines a lower bound
for the standard deviation of any stochastic discount factor depending on the risk-free rate.

Since the correlation coefficient is between -1 and 1, we have

E, [Rtﬂ] - th+1
ot [Ret1 — th+1]

< Ryppp10¢ [Myq] = SR, for all assets. (41)

Eq. implies the Hansen and Jagannathan (1991) bound, which is an upper bound to the
absolute value of the conditional Sharpe ratios of any asset in the economy, given a specific
discount factor. The maximum Sharpe ratio, SR;"**, is achieved if there exists an asset in the
economy which is perfectly negatively correlated with M; 1. In general, the Sharpe ratios of all
the assets in the economy are bounded by the right-hand side of Eq. but when markets are
complete there exists an asset that achieves the upper bound, and the inequality becomes an
equality@ Moreover, a very volatile SDF is necessary to understand high Sharpe ratios. The
conditional variance of the SDF can be thought of as the variance of the investor’s marginal
utility of consumption in the next period@ Therefore, from Eq. we learn that each model
has an implication for the dynamic behavior of the market Sharpe ratio, since each model implies

a functional form for the SDF.

The use of log-returns is a common practice in the empirical literature. A standard approx-
imation of the Sharpe ratio based on continuously compounded returns is given by

E o7 lris]

tlreen] = rpen + =5

SR; =
O [T‘t+1]

) (42)

where ;1 denotes the continuously compounded return of an asset, r¢;1 denotes the contin-
uously compounded risk-free rate and oy [ri41] denotes the standard deviation of the return of
an asset. The numerator in Eq. (42 includes the Jensen adjustment for log—returns@

28 A detailed discussion of this result is shown in [Lettau and Uhlig| (2002).

29Hansen and Jagannathan| (1991) provide a comprehensive analysis of this bound, allowing for many risky assets
and no risk-free asset, and derive implications of the positivity of the stochastic discount factor.

39The difference between Egs. and is almost negligible for short return horizons, as reported by [Brandt
and Kang| (2004). [Nielsen and Vassalou| (2004)) analyze the difference between discrete and continuously compounded
versions of Sharpe ratios and propose this adjustment for performance evaluation. |Campbell and Viceira (2002)) discuss
in detail this approximation in a portfolio optimization framework.
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B The Solution to the Long-Run Risks Model

This section provides solutions for the consumption and dividend claim for the Bansal, Kiku,

and Yaron| (2012al) endowment process,

Acty1 = e+ x4 + 04t

T4l = Pt + PeOteryl

0t2+1 = 24w (0,52 — 62) + oW1 (43)
Adiy1 = pg + oo + Porur1 + TON4

W41 €415 Ut+15 Mt+1 1.4.d. N(O,l).

The Euler equation for this economy is

0
E [exp (0 log 8~ Actir + (0~ 1)z + Ti,t+1>

=1, (44)

where 74441 is the log-return on the consumption claim and 7;;41 is the log-return on any
asset. All returns are given by the approximation from |Campbell and Shiller| (1988)), 7 ¢+1 =

Ko, + K1,i%it+1 — Zip + Ad;py1.

Let Y/ = [1, x4, 0?] denote a vector of state variables and the log price-consumption ratio be
given by 2z = A'Y;, where A denotes a vector of coefficients A" = [Ag, A1, A . In general, for
any other asset ¢, define the coefficients in the same manner: A} = [A;, Aj;, A2 ;] . This section
calculates the price of the consumption claim as well as the dividend claim z;,, = A} Y;. The
coefficients that characterize z; and z; ,,, are obtained by the method of undetermined coefficients

and by the fact that the Euler equation must hold for all values of Y} .

The risk premium on any asset is

1
Ei[rige —res + §Va7“t Pige1] = —Covp (Myg1,Ti041) (45)

2
= > NBigois

j=n,e,w

where 3; ; is the beta and 0]2-’15 the volatility of the j* risk source, and the Aj represents the

price of each risk source.

42



B.1 Consumption Claim

The risk premium for the consumption claim is
1
Ei[rap1 —rre + iVart [Tat+1] = )\nﬁa,naf + )\eﬁa,eatg + )\wﬁa7w03), (46)

where 3, =1, Bae = kK1A19e and B, = K1A2. The conditional variance of the consumption

claim is equal to
Var [ra] = (B2, + B2, ) 0F + 82,07, (47)

The coefficients A’ for the log price-consumption ratio z; are

ID(S + He (1 - %) + Ko + /Ba,w52 (1 - U) + %gﬁiwdi

A
0 (1—,‘4/1) ’
A ik 48
v 1—rk1p’ (48)
627
2 P a,e
Ay = ( ) .

(1 — /'4311)1)

B.2 Dividend Claim

The innovation to the market return, denoted by 7y, t+1 — Et (Tmt+1) , 18

Tmyt+1 — Bt (Tm,i41) = @Ottir1 + BmpnOiNi+1 + Bm,e0t€it1 + BmwlwWitt, (49)

where B,y = T, Bme = K1,mA1,mPe and By = K1,mA2,m, which implies that the risk premium

on the dividend claim is

1
Ey[rm i1 = rpal + 5Vare [rma] = MyBnnoi + Aebm.eof + AwBmwy. (50)
Finally, the coefficients A/, for the log price-dividend ratio are as follows

06+ pie (0= & —1) = A& (1= ) + (0 = 1) [1sg + Ao (51 — 1)]
Ro,m + 6m,w52 (1 - U) + pg + % [/Bm,w - Aw]Q 0'120

Agm = :
0 (1= K1m)
ot
A = —2 1
17 1 — Hl,mp (5 )
| (1= 0) Ao (1= k1v1) + § [(7 = M) + [Bne = AJ> + 62
am (1 — K1mo) '
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B.3 Risk-Free Interest Rate

The risk-free rate is derived from the Euler equation applied to the risk-less asset:

rriv1 = —log By [exp (mgy1)]

—0lnd + ”ZJEt [ACt+1] + (1 - 9) Et [Ta7t+1] (52)

1 0
_ivart EACtH +(1=0)raes1]| -

By subtracting (1 — ) ry+1 from both sides of Eq.(52) and if 6 # 0, then we can divide by 6,

yielding to an expression for the risk-free rate

1 1-06 1
Tiip1 = —Ind + @Et [Acii1] + WEt [Pat+1 —Tf 1] — 5gV Tt (mey1), (53)
where
Ei[Actia] = pe+
2 2
9 + B b /32
Ey [Ta,t+1 - rf,t-i—l] = (Anﬁa,n + )\eﬁa,e - (CLTL2¢1€)) 0’? + <)\w6a,w - ;w) 0’3;-
Vary (myp1) = (A% + )\z) Uf + )\?UJ?U,
as a result
rrev1 = Ao + A1 pay + Ag goi, (54)
where
He (1-0) 210 2 )‘30‘712”
A = —Inéd+—= A : —
0,f + 1/} + 0 wﬁa,w 2 w 20 5
1
Al =
7f ,l/)
g, = 0= (2. +62.)\  (R2+x)
2,f — 0 nHa,n eMPa,e — 9 — 20 .
B.4 Return on the Market Portfolio
Recall that the rate of return on the market portfolio is
Tmt+1 = Koom + K1mZm,t+1 — Zmt T+ Adt—i—h (55)
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where the dynamics are characterized by the following equations

Zm,t
Tt4+1
o 1:2+1
Ady

2
= AO,m + Al,mxt + A2,mat
= PTt+ PeOieiil
= o240 (0? = 7%) + owwis,

= i + @It + POtUL L1 + TON 41

Now, since each of the components of the market return follows a normal distribution, then the

market return has a normal distribution with conditional mean

Ei[rmis1] = Kom + E1mEr [2mis1] — 2mt + Er [Adi]

= Kom + Kim (AO,m + Armpre + Ao (52 +v (0152 -0

—Aom — ALy — Agmo? + pa + ¢y

= Kom t+ (Kl,m - 1) AO,m + "517mA2,m (1 - U) 7 + tq
+ AL (51mp = 1) + @l 20 + Az (R1mv — 1) 07
= BO + let + BQU?,

where

By = kom + (F1m — 1) Aom + Kk1mAsm (1 —0) T + pig

B = ¢—Aim (1 —Kimp) =

1
w?

B2 = Ag’m (/ﬁ,mv - 1) .

Now, the variance of the market portfolio is given by

Var [rme] =

nimVart [Zm,t-i—l] + V(IT‘t [Adt—i—l]
2 (A2 20 + A302) + (92 + 7% o
Dg + D10't2,

where Dy = (1,mA2,m0w)” and Dy = KT m AT e + 97 + T

45
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B.5 Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the following system

of equations as discussed in |Bansal, Kiku, and Yaron| (2012a)) and [Beeler and Campbell| (2012):

% = Aui(Z)+ Az () 0,
exp (%)

1+exp(z)’

Ko = In(1+exp(Z)) — K%

K1,i

(58)

The solution is determined numerically by iteration until reaching a fixed point of Zz;. The
dependence of Ap; and As; on the linearization parameters has been discussed in previous

sections.
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C Excess Returns Conditional Moments Implied by
the Long-Run Risks Model

C.1 Expected Returns

The expected excess returns for period k are defined as

Tmt+k+1 — Tft+k+1, k= 07 17 27

Now, the conditional excess risk premium for any period has a closed-form expression given by

By [Pmgiks1 — Tfatki1) = Bogr1 + E1ki107, (59)
where
Eori1 = Eo+ Ey (1 - Uk) 7,
Eipy = Epf k=0,1,2,..,

Ey = Bo— Aoy,
FEy = BQ—AQJ.

C.2 Variance of Excess Returns
Now, for any time period k, the conditional variance of the future excess returns is given by
Var [rmiks1 — Tperkr1), for k=0,1,2,...

Its closed-form expression is given by

Vary [Fmatk+1 — T fatki1) = Dogs1 + Digr107, (60)
where
1— v?k:
k) —

DO,k+1 = D0+D1(1—1}>02+E%O’Z)1_U2
Diji1 = oDy,

Dy = (/<51,’rrrAQJr’LO'TrL)2 )

D; = (/{I,mAl,m(-Pe)Q + (702 + 71'2.
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C.2.1 Autocovariance of Excess Returns
Now, let 0 < k < p. Then the autocovariance of excess returns is

1—U2k

2 2 —k
cov (Tt = Tf k1, mt+pt1 — Tfppr1) = Eyoy,oP ( 1

2 p—k—1
— 2 > + Ell{l:mAZmo-va .

C.3 Aggregate Excess Returns

Now, the expected excess returns during K periods are given by the sum of the one-period

excess returns,
K

(Pmjttk = Tevk) -
k=1

Its conditional mean is

K
2
Ey [ > Ttk — rf,t+k1 = Eo,x + E1,x07%,
k=1

where

(1-")
Eox = KEy+Ed’|K—~—/"2|,
’ (1-v)

C.4 Variance of Aggregate Excess Returns

The conditional variance is
K

2
Vary [Z Tmt+k — T’f,t+lc‘| = Do,k + D1,k07;.
k=1
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where

2 (1 B UK)
Dox = KDy+ KDio?>— Dig*~—~

’ (1-v)
2K
gt [, (120)
102 1 0?)
E202
+2 K — 1-— vK (117)2) [130}
1-w +E1/€17mA27m0120 [ﬁ}

2p203 v* (1 01) (1-0F)
C(1—v?)  (1-v)2(1+v)

_ oK
Dixg = (Z-l_v))Dl.

49



D The Particle Filter

The particle filter is a sequential Monte Carlo algorithm, that is, a sampling method for ap-
proximating a distribution that makes use of its temporal structure. A “particle represen-
tation” of distributions is used. In particular, I will be concerned about the distribution
f (Stlyt, yi—1,...,yo) where S; is the unobserved state at time ¢, and vy, y1—1, ..., yo is the se-

quence of observations from time 0 to time ¢.

For the standard Kalman filters, this distribution f (S¢|ys, yi—1, ..., yo) follows a multivariate
normal distribution due to the linearity in the measurement and its distribution (f (S¢|Si-1))
and state equations. The particle filter is more general, and is based on a less restrictive
framework. The only requirements are that the conditional distributions should be tractable,

in the sense that I only need to be able to evaluate these distributions, and draw samples from

f(St]Si—1) or f(Se|St—1,¢)-

In a few cases, such as the linear and Gaussian filters, without restrictive linear Gaussian
assumptions regarding the transition and sensor models, f (St|yt, y1—1, ..., Yo) cannot be written
in a simple form. Instead, I will represent it using a collection of N weighted samples or particles,
{St(i),wt(i)}{\il where Trt(i) is the weight of particle St(i). A particle representation of this density
is given byl_

F(Selyes Yty s o) = S5 (St B St(i_)l) .

Consider the integral that needs to be evaluated at each filtering step; then

I (Stlye, ye—1, -, 90) = oof (yt\St)/f(St—llyt—byt—z,--~7y0)f(5t!5t—1)d5t—1,

which is a recursive definition to compute the filtered distribution f (S¢|ys, ¥¢—1, ..., Yo) given the
distribution f (S;—1|y¢—1,¥t—2, -, %0) -
With a particle representation for f (Si—1|yi—1,¥yt—2,...,%0) , the recursive equation can be

approximated as
F (Stlyt v, w0) = aof (w50 Y- m £ (SilsE2,)

The only element to be decided is the set of particles for representing the distribution
f (Stlyts yt—1,---,40). One choice is to use importance sampling. The particle filter can be
thought as an application of the importance sampler on this distribution. The technique of
importance sampling is used for generating random samples of a distribution f (z). Suppose

f (z) is a density from which it is difficult to draw samples, but it is easy to evaluate g (x;) for
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some particular x;. Then, an approximation to f (x) is given by
f(z) ~ Zw(i)é (m - x(i)) ,
i

where
NONNFAC)
g ()

Note that any distribution g (-), known as a proposal distribution, can be used here, in partic-

ular, a uniform sampling of state space x. However, with such a uniform sampling strategy,
most samples will be wasted, having small 7(? values. Instead, I use a more direct proposal
distribution, my approximation to f (S¢|ys, Yt—1,-..,y0). With this proposal distribution, the
weights 7)) end up being relatively simple due to cancellation.

Concretely, the particle filter consists of the following steps:

1. Draw N samples St(j ) from the proposal distribution ¢ (S;)
S~ q(S) = 2omf (Silsih)

by drawing a random variable from a uniform distribution defined on (0, 1), choosing the
corresponding particle ¢ and then sampling from f (St\St(Z). This transition model is
typically a linear Gaussian model, but any model from which samples can easily be drawn

will suffice.

2. Set the weight W,g‘j ) as the likelihood
= 1 (uls?)

.The samples {St(j )} are drawn from f (S¢|ys, yi—1,..-,90). Re-weighting them in this

fashion accounts for evidence y;.

3. Normalize the weights {mfj )}:

Note also that there is an optimal proposal distribution, which is not the one used here. The
optimal proposal distribution, minimizing variance in weights m, is f (S¢Si—1,y:). The most
important property of the particle filter is its ability to handle any nonlinearity. However, it
has difficulties when S; is high-dimensional. Essentially, the number of particles N required
to adequately approximate the distribution grows exponentially with the dimensionality of the

state space.
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E Quasi-Maximum Likelihood Estimation

Since the measurement equation considered in each of the models is nonlinear, one possibility
is to rely on Taylor series approximations to obtain extended forms of the Kalman filter. The

transition and measurement equations analyzed in the previous section are expressed as follows:
Yt = p(St—1) + A (St—1) &, (61)

Sy = ASi—1 + 4, (62)

where &; follows a standard normal distribution and 7; is a d—dimensional noise vector with
variance-covariance matrix X. The deterministic functions p (S;) and A (S;) define the condi-

tional mean and volatility of excess returns and are characterized by each of the models.

I use Gaussian approximations to filter the mean and covariance of the states and measure-
ment series. More specifically, the linearity of the state vector implies that the first and second

conditional moments of the state vectors are

5t+1\t = ASt|t> (63)
Py = AP A +3, (64)

where S 1, and P, are the time ¢ predicted values of the conditional mean and covariance
matrix of the state vector, respectively. These moments allow us to generate a predicted mean

Ye+1)¢ and covariance matrix PYY.  of the measurement series, given by

1t
Yer1t = E {14 (St) + A (St) €41 Y6, Ye—1--, 0] 5 (65)
ngw = Var[u(St) + A(St) €t41 Yt Ye—1, s Yo -

Finally, the covariance between the observed and unobserved variables, Pﬁr’l' ¢ 18

Pﬁut = Cov [Sey1, u (Se) + A (St) €t41 [yt Ye—1, -, Yo - (66)

Using these conditional moments, we apply the Kalman update, represented by the following

set of recursive equations to obtained values for the conditional mean S;, 4, and covariance

Pipqjeq1:
1
_ sY gy
Kip1 = Pt+1|t (Pt+1|t) ) (67)
Str1jtr1 = Sty + K (yt—i-l - yt+1|t) ;
Piytjppr = Py — Kot P K.
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The first attempt to estimate the moments in Egs. through uses closed-form
expression, if available. An alternative way is to use Taylor series expansions of u(S;) and
A (St) around Sy, for an arbitrary number of terms. Romero (2012) develops a nonlinear
filter based on Gaussian approximations that uses high-order Taylor series to compute the
moments involved in the Kalman filter update represented by Eq .

E.1 Quasi-Maximum Likelihood Function

Once the conditional mean, y;|;, and conditional covariance, ng” ;» for each observation are

obtained, a quasi log-likelihood function for each observation is constructed assuming that each
observation y;41, is normally distributed with mean, y;,q);, and volatility Pﬁ/u ;- Let 6 denote
the vector of parameters that are used to perform the Kalman filter. The log-likelihood for each

observation, denoted by I; (), is calculated as

1 (yt+1 - yt+1|t)2

1 1
l¢ (6) = 3 log (2m) — 5 log (P) - > B, (68)
Finally, we choose the parameter values 6 that maximizﬂ
L(0) =%{1L (0). (69)

31Gee |Gallant and White (1988) for a detailed theoretical justification of quasi-maximum likelihood estimation.
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F External Habit Formation Model

This section presents the model by |Campbell and Cochrane (1999) in discrete time and its
extension in [Wachter| (2005). A representative investor is assumed to have state-dependent
preferences. More specifically, an investor has utility over consumption relative to a reference

point X; and maximizes
2 (G =X -1
t=0

where 0 > 0 is the time preference parameter and v > 0 is the curvature parameter.

Each investor is concerned with her consumption relative to that of others. Habit X; is

defined through surplus consumption S¢, where

_G-X

St G,

(71)

One can interpret S; as a business cycle indicator. In economic booms, consumption substan-
tially exceeds the external habit and the surplus, S, is large; and in recessions consumption

barely exceeds the external habit, and the external habit is relatively small.

It is assumed that s; = log S; follows the process

str1 = (1= @) 5+ @8t + A(st) (Acir1 — B [Acit1]) (72)

where 3 is the unconditional mean of s;, ¢ is the persistence and \ (s¢) is the sensitivity of the
changes in consumption. The unconditional mean and the sensitivity function are defined in
terms of primitive parameters. It is assumed that aggregate consumption growth is log-normal

with independent and identically distributed innovations; that is
Acty1 = g+ viy1, (73)

where ¢; = log Cy and v ~ N (07 Ug) is an i.i.d. sequence. The process for s; is heteroscedastic
and perfectly conditionally correlated with innovations in consumption growth. The sensitivity
function A (s;) is specified so that the real risk-free rate is linear, and for s; ~ 35, z; is a

deterministic function of past consumption. Consequently, we have

1/Sy/1—-2(st —35) — 1, if 8t < Smax

A(st) =
(st) 0 otherwise,

(74)
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S e i

where b is a preference parameter that determines the behavior of the risk-free rate and spax =
E—l—% (1 — §2> . In|Campbell and Cochrane| (1999), b is chosen to be zero and produce a constant
real risk-free rate, while [Wachter| (2005)) shows that values of b > 0, imply a risk-free rate that

is linear in sy;

F.1 Stochastic Discount Factor

Since the habit is external, the investor’s inter-temporal marginal rate of substitution is given

by
Ser1\ 7 C'1t+1)_V
M. = .
i 5( St ) ( Cy (76)

Moreover, any asset return R;;; must satisfy

E¢ [Myi1 Risq] = 1. (77)

F.2 Risk-Free rate and Maximum Sharpe Ratio

Let R ;41 denote the one-period risk-free return between ¢t and ¢t +1, and r¢¢y1 = log (R ¢41);
as a result, from Egs.(76]) and imply that

rrie1 = —log (B [Miya]) (78)
2 2
— —log (6) + 79+ 7 (1= ¢) (5 — s1) — 2 (14 A(s1))?
= —log(d) +~g— W—Fb(s—st),

where the last equality comes from substituting the definition of A (s;). This definition implies
a risk-free rate linear in s;.

Conditional on the information at time ¢, the one-period stochastic discount factor, de-
fined in Eq. is the exponential of a normally distributed random variable that has variance
7214 A (S;)]? 0. As a result, the Hansen-Jagannathan bound implies that

\/exp (72 [14 A (S)]? 02) -1

is an upper bound on the Sharpe ratio of any portfolio. If A is a decreasing function of S, then

the upper bound on Sharpe ratios will be counter-cyclical: higher in recessions than in booms.
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F.3 Price-Dividend Ratio

The aggregate market is represented as the claim to the future consumption stream. If P; denotes
the ex-dividend price of this claim, then Eq. implies that in equilibrium P; satisfies

E, =1, (79)

P
My ( t+1 ; Ct+1>
¥

which can be rewritten as

P, C P,
E {MtJrl (1+ t+1> t+1}_ b

Cini) Cp |~ O

Because C} is the dividend paid by the aggregate market, P;/C} is the price-dividend ratio. The
price-dividend ratio can be computed numerically using numerical methods; Wachter| (2005))

provides an efficient method for its computation.

Returns on the aggregate market are defined as

mo_ (Pt+1/Ct+1 + 1) Cy1
o P/ Cy Cy

The main difficulty lies in solving the model for the price-dividend ratio as a function
of s;. Once the price-dividend ratio is calculated numerically, Monte Carlo simulations can be
performed to obtain accurate estimates of expected returns, volatilities and Sharpe ratios for

different holding periods. Details about the simulations are explained in Wachter| (2005).
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FIGURE 1
This figure shows the results of a simulated path of annual returns using the calibration by
land Yaron| (2004). Each simulation has 100 annual observations of returns.  Fitted values for
the conditional mean and variance were constructed using predictor variables. Panel A shows a
random path of annual returns with the fitted OLS wvalues. Panel B shows the realized vari-

ance constructed with realized returns along with its OLS fitted values in dotted lines.  Panel
C contains the conditional Sharpe ratio estimates based on the OLS fitted values of the condi-
tional mean and conditional volatility; Panel D contains the Sharpe ratios implied by the model.
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Long-Run Risks Parameters

TABLE 1

Endowment Process Parameters Symbol BY Calibration
Mean Consumption Growth fhe 0.0015
LRR Persistence p 0.979
LRR Volatility Multiple Pe 0.044
Mean Dividend Growth [hd 0.0015
Dividend Leverage [0) 3
Dividend Volatility Multiple © 4.5
Dividend Consumption Exposure s 0
Baseline Volatility T 0.0078
Volatility of Volatility Ow 0.0000023
Persistence of Volatility v 0.987
Preference Parameters Symbol BY Calibration
Risk Aversion v 10
EIS (0 1.5
Time Discount Factor ) 0.998

Endowment Process:

Aciyr = e+ T + 0
Tip1 = PTet+ POty
JEH = 7+ (af — 52) + OpWey1
Adip1 = pg+ ¢zt + pour1 + TOp4

Wia1, €pa1, U1, N1 1.1.d. N (0, 1) .

This table displays the model parameters for Bansal and Yaron| (2004) (BY). The endowment process is
described above. All parameters are given in monthly terms. The standard deviation of the long-run
innovations is equal to the volatility of consumption growth times the long-run volatility multiple, and the
standard deviation of dividend growth innovations is equal to the volatility of consumption growth times
the volatility multiple for dividend growth. Dividend consumption exposure is the magnitude of the impact
of the one-period consumption shock on dividend growth. Dividend leverage is the exposure of dividend

growth to long-run risks.
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TABLE 2

Long-Run Risks Moment Comparison

Moment OLS Regressions Model

Expected Returns 0.0417 0.0417

Standard Deviation 0.0301 0.0087
Correlation 0.0052

Volatility 0.1653 0.1641

Standard Deviation 0.0092 0.0167
Correlation 0.0434

Conditional Sharpe Ratio 0.2645 0.3333

Standard Deviation 0.1582 0.0353
Correlation 0.0039

This table displays moments calculated for the Bansal and Yaron| (2004) model from annual datasets.
Columns 1 and 2 display the results using years as time interval. The moment displayed is the median
from 100,000 finite sample simulations of length 100 years. The returns on equity and the risk-free rate are
aggregated to a yearly level by adding the log-returns within the year.
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TABLE 3

Long-Run Risks Moment Comparison

Moment Filtering Model

Expected Returns 0.0418 0.0417

Standard Deviation 0.0080 0.0087
Correlation 0.5721

Volatility 0.1645 0.1650

Standard Deviation 0.0168 0.0167
Correlation 0.5651

Conditional Sharpe Ratio 0.3341 0.3333

Standard Deviation 0.0322 0.0353
Correlation 0.5694

This table displays moments calculated for the Bansal and Yaron (2004) model. Columns 2 to 5 display
the results using years as time interval. The moment displayed is the median from 1500 finite sample
simulations of length 100 years. The returns on equity and the risk-free rate are aggregated to a yearly
level by adding the log-returns within the year.
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TABLE 5

Quasi-Maximum Likelihood Parameter Estimates

Positive Risk Premia

Model A Model B Model C Model D

0.6727 07029  0.7204  0.7079
1 0.0066)  (0.0041)  (0.0834) (0.1211)

-0.0894  -0.1521
1 0.0279)  (0.0184)

0.3215 -0.4948
2 (0.0011) (0.0938)

0.8310  0.7400  0.9182  0.8730
92 (0.0025) (0.0114) (0.1798) (0.1142)
02897  0.1350  0.0944  0.1924
(0.0063)  (0.0194) (0.5390)  (0.1674)
0.0020  0.0001  0.0055  0.0072
(0.0070)  (0.0054) (0.1111)  (0.8430)
-0.3073  -0.1760  -0.7989  -0.7995
P (0.0009) (0.0004) (0.2773)  (0.0029)
00131 00131  0.0131  0.0131
(0.0000)  (0.0159)  (0.0675)  (0.1065)
0.0857  0.0857  0.0857  0.0857
(0.0000)  (0.0005) (0.0166) (0.5172)

=

qQ

Q-lik 245.37 245.32 244.93 244.69

This table presents the quasi-maximum likelihood estimates of the models of the form

Yt = u(St—1) + A\(St—1)et,
and
Sy = AS;_1 +n with n; ~ N (0,%),

where

Ao | ez | b11 PV b11b22
as a |’ v/ b11b22 bao ’

u(Sy) = mexp(Si¢) and o(St) = Texp(Sat). The estimates are for quarterly returns on the value-weighted
CRSP index in excess of the three-month Treasury bill from the second quarter of 1953 to the fourth
quarter of 2011. Standard errors are reported in parentheses.
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TABLE 6

Regressions on Quarterly Data

No Constant Lag Cay d-p RREL TRM DEF R?
Panel A: Excess Returns: 1953:2 - 2011:4
1953:2 - 2011:4
1 0.01 0.07 0.01
(2.76) (1.18)
2 0.02 0.79 0.03
(2.92) (2.57)
3 0.01 0.08 0.80 0.03
(2.81) (1.28) (2.71)
4 0.14 0.76 0.02 0.04
(1.84) (2.30) (1.61)
5 0.13 0.08 0.67  0.02 -1.46 0.07
(1.86) (1.31) (2.16) (1.64) (-2.64)
6 0.16 0.06 0.61 0.03 -1.29 0.84 0.08
(2.12) (0.99) (1.99) (1.96) (-2.20) (1.59)
7 0.16 0.06 0.61 0.03 -1.30 0.84 -0.07  0.08
(1.87) (0.99) (1.99) (1.83) (-2.30) (1.59) (-0.05)
Panel B:Log Excess Returns:
1953:2 - 2011:4
1 0.01 0.08 0.01
(2.14) (1.31)
2 0.01 0.82 0.03
(2.34) (2.65)
3 0.01 0.09 0.83 0.03
(2.18) (1.41) (2.81)
4 0.15 0.78 0.03 0.04
(1.96) (2.35) (1.77)
5 0.15 0.09 0.70 0.03 -1.37 0.07
(2.00) (1.43) (2.23) (1.81) (-2.38)
6 0.17 0.07  0.65 0.03 -1.21 0.79 0.08
(2.25) (1.14) (2.07) (2.11) (-1.99) (1.49)
7 0.18 0.07  0.63 0.03 -1.26 0.83 -0.38  0.08
(2.07) (1.14) (2.01) (2.04) (-2.17) (1.56) (-0.28)

This table reports estimates from OLS regressions of quarterly realized returns and log-returns for the CRSP VW
index on lagged explanatory variables for the second quarter of 1953 to the fourth quarter of 2011. The conditioning
variables are lagged realized volatility (Lag); the consumption, wealth, income ratio (cay); log dividend-price ratio
(d — p); the relative bill rate (RREL); the term spread, the difference between the ten-year Treasury bond yield and
the three-month Treasury bond yield (T’ RM); the Baa-Aaa default spread (DEF). The t-stats were constructed
with heteroscedasticity-consistent standard errors.
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TABLE 7

Regressions on Quarterly Data

No Constant Lag Cay d-p RREL TRM DEF R?
Panel C: Realized Volatility of Excess Returns:
1953:2 - 2011:4

1 0.03 0.61 0.37
(5.16)  (7.39)

2 0.07 -0.32 0.02
(16.76) (-2.02)

3 0.03 0.60  -0.23 0.38
(5.35)  (7.54) (-2.76)

4 -0.08 028  -0.03 0.12
(-2.16) (-1.69)  (-3.90)

5 -0.05 054 -023 -0.02  -0.27 0.41
(-2.74)  (6.84) (-2.58) (-3.97) (-1.00)

6 -0.06 054 -022 -0.02 -0.28  -0.07 0.41
(-3.02)  (6.84) (-248) (-4.39) (-1.06) (-0.51)

7 -0.10 046 -0.16 -0.02 -0.18 -0.19 1.34 0.43

(-3.64)  (5.33) (-1.71) (-4.57) (-0.75) (-1.28) (2.83)

Panel D: Realized Volatility of Log Excess Returns:
1953:2 - 2011:4

1 0.03 0.61 0.36
(5.15)  (7.38)

2 0.07 -0.32 0.02
(16.7) (-2.01)

3 0.03 0.60  -0.23 0.37
(5.34)  (7.53) (-2.75)

4 -0.08 028  -0.03 0.12
(-2.18) (-1.68) (-3.92)

5 -0.05 054 -0.23  -0.02  -0.27 0.41
(-2.76)  (6.83) (-2.57) (-3.99) (-0.99)

6 -0.06 054 -0.22 -0.02 -028  -0.07 0.41
(-3.04)  (6.83) (-2.46) (-4.41) (-1.05) (-0.48)

7 -0.10 046 -0.16 -0.02  -0.17 -0.19 134 0.42

(-3.65)  (5.32) (-1.71) (-4.58) (-0.73) (-1.24) (2.81)

This table reports estimates from OLS regressions of quarterly realized volatility of returns and log-returns for the
CRSP VW index on lagged explanatory variables for the second quarter of 1953 to the fourth quarter of 2011. The
conditioning variables are lagged realized volatility (Lag); the consumption, wealth, income ratio (cay); log
dividend-price ratio (d — p); the relative bill rate (RREL); the term spread, the difference between the ten-year
Treasury bond yield and the three-month Treasury bond yield (TRM); the Baa-Aaa default spread (DEF'). The
t-stats were constructed with heteroscedasticity-consistent standard errors.
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TABLE 8
Summary Statistics of Expected Returns, Volatilities and Sharpe Ratio Estimates

Mean St. Dev. Min Max AC(1)

e 0.01 0.02 -0.04 0.07  0.80

OLS Methods o, 0.07 0.02 0.02 022 0.79

SR, 0.30 0.42 -0.61 1.84 081

e 0.02 0.01 0.01 0.03 0.59

Brandt and Kang| (2004) o,  0.09 0.01 0.07 0.12  0.85
SRy 0.25 0.05 0.14 041 0.61

This table reports descriptive statistics of the estimates of expected returns, volatilities and Sharpe ratios. The first
set of conditional moments are estimated from OLS regressions of quarterly realized log-returns for the CRSP VW
index on lagged explanatory variables for the first quarter of 1953 to the last quarter of 2011. The second set of
estimates are based on the reduced form model by Brandt and Kang| (2004) in which the conditional mean and

volatility of stock returns are treated as latent variables.
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TABLE 9

Quasi-Maximum Likelihood Parameter Estimates

Unconstrained Risk Premia

Model A Model B Model C Model D

0.5276 05532 0.5090  0.5282
(0.0498)  (0.0002)  (0.0440)  (0.0026)
04967  -0.4154
%1 0.0206)  (0.0001)

10.0165 10.0247
2 (0.1388) (0.3278)

0.8426  0.8551  0.8859  0.8221
922 (0.1521)  (0.0000) (0.9465)  (0.0068)
0.0002  0.0004  0.0001  0.0004
(0.0014)  (0.0012)  (0.0029)  (0.0020)
0.0088  0.0048  0.0091  0.0132
(0.0091)  (0.0013) (0.1097)  (0.1982)
07994  -0.7491  -0.7999  -0.7678
P (0.0409)  (0.0002) (0.2009)  (0.0012)
0.0131 00131 00131  0.0131
(0.0259)  (0.0300) (0.0013)  (0.1253)
0.0857  0.0857  0.0857  0.0857
(0.0045)  (0.0036)  (0.0001)  (0.0106)

a1

=

qQ

Q-lik 246.12 245.72 246.01 245.52

This table presents the quasi-maximum likelihood estimates of the models of the form

Yt = u(St—1) + A\(St—1)et,
and
Sy = AS;_1 +n with n; ~ N (0,%),

where

Ao | ez | b11 PV b11b22
as a |’ v/ b11b22 bao ’

p(Sy) =+ Sit and o(S;) = 7 exp(Sa). The estimates are for quarterly returns on the value-weighted
CRSP index in excess of the three-month Treasury bill from the second quarter of 1953 to the fourth
quarter of 2011. Standard errors are reported in parentheses.
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TABLE 10

Quasi-Maximum Likelihood Parameter Estimates

Parameters Model D Extended Model D
Estimate  S.E. Estimate S.E.
a1 0.7079  0.1211 0.5135 0.3421
a21 - - - -
12 - - - -
(99 0.8730  0.1142 0.7649 0.1381
b1y 0.1924 0.1674 0.0049 0.5434
bas 0.0072  0.8430 0.0006 0.0690
p -0.7995  0.0029 -0.4523 0.0882
I 0.0131  0.1065 0.0131 0.0021
T 0.0857  0.5172 0.0857 0.0009
c11 - - 7.7812 2.6462
C19 - - 1.0911 0.8892
C13 - - -38.8899  1.5632
C14 - - 0.4021 0.7437
Ci5 - - -39.1056  0.1624
C21 - - -1.3562 1.7051
C22 - - -0.1460 0.0644
€23 - - -0.1245 5.6614
Cou - - -5.4407 1.4016
Ca5 - - 10.7989  0.4681
Q-lik 244.69 263.46

This table presents the Quasi-maximum likelihood estimates of the model of the form
Yr = p(Se—1) + A\(St—1)et,
and
St = Cxy + AS;—1 + 1 with ny ~ N (0,%),

where

Co1 C22 €23 C24 C25 a1 a2 PV b11b22 bao

p(Sy) = mexp(Sit) and o(S;) = Texp(Sa;). The vector of conditioning variables x; contains the de-meaned
consumption, wealth, income ratio (cay); log dividend-price ratio (d — p); the relative bill rate (RREL);
the term spread, the difference between the ten-year Treasury bond yield and the three-month Treasury
bond yield (TTRM); and the Baa-Aaa default spread (DEF'). Heteroscedasticity-consistent standard errors
are reported. The estimates are for quarterly returns on the value-weighted CRSP index in excess of the
three-month Treasury bill from the second quarter of 1953 to the fourth quarter of 2011.
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TABLE 11

Summary Statistics of Sharpe Ratio Estimates

Mean St. Dev. Min Max AC(1)

BK 0.25 0.05 0.14 041 0.61
BK (Unconstrained) 0.26 0.10  -0.05 0.49 0.71
BK (Extended) 0.31 0.25 0.07 158 0.88

OLS Methods 0.30 0.42 -0.61 1.84 081

This table reports descriptive statistics of the estimates of Sharpe ratios based on quarterly realized log-returns for
the CRSP VW index for the first quarter of 1953 to the last quarter of 2011. The first, second and third sets of
Sharpe ratio estimates are based on the reduced form model by Brandt and Kang| (2004) (BK) in which the
conditional mean and volatility of stock returns are treated as latent variables. The first representation guarantees
positive values for the conditional mean and volatility, while the second representation guarantees a positive
volatility only. The third representation is an extended version in which the conditional moments are positive
functions of exogenous predictors. Finally, the last set of Sharpe ratio estimates is based on the conditional moments
estimated from OLS regressions of log-returns on lagged explanatory variables.
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FIGURE 2
This figure shows the results of a simulated path of the volatility of consumption growth using the cali-
bration by Bansal and Yaron| (2004). Each simulation has 100 annual return observations. Panel A shows
a random path of monthly returns of the volatility of consumption growth. The dotted line represents
the filtered values of o7. Panel B shows the simulated risk premia along with its filtered values in dotted
lines. Panel C contains the simulated standard deviation of the risk premia as well as its filtered values.
Panel D contains the simulated conditional Sharpe ratio along with its filtered values. The dashed lines
are assumed to be unobservable to the econometrist, while the continuous lines are the filtered values.
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FIGURE 3
This figure shows the results of a simulated path of the volatility of consumption growth using the
calibration by [Bansal and Yaron| (2004). Each simulation has 100 annual return observations. Panel
A contains the conditional Sharpe ratio estimates based on the OLS fitted values. Panel B con-
tains the filtered Sharpe ratio estimates implied by the long-run risks model; the dotted lines rep-
resent the annual Sharpe ratio implied by the model which are assumed to be unobservable to the
econometrist; Panel C contains the filtered Sharpe ratio estimates implied by the long-run risks model
based on parameter estimates obtained via quasi-maximum likelihood. The dotted lines represent the
annual Sharpe ratio implied by the model, which are assumed to be unobservable to the econometrist.
The simulations were performed with the calibrated parameter values from |Bansal and Yaron| (2004).
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FIGURE 4

This figure shows the results of a simulated path of the volatility of consumption growth using the
Each simulation has 100 annual return observations.
Panel A contains the conditional Sharpe ratio estimates based on the OLS fitted values; Panel B con-
The sim-

calibration by |Campbell and Cochrane| (1999).

tains the filtered Sharpe ratio estimates implied by the external habit formation model.

ulations were performed with the calibrated parameter values from Campbell and Cochrane (1999).
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FIGURE 5
This figure shows the estimates of the conditional mean, volatility and Sharpe ratio. The fig-

ures show the quarterly estimates of the conditional mean, pu, conditional volatility, o; and
Sharpe ratio, SR;, obtained via filtering techniques. The left column corresponds to the model
with a positive risk premia and the right column contains the filtered estimates of the model
with an unconstrained risk premia. The vertical bars represent the NBER recession dates.
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Optimal Weight

FIGURE 6
This figure shows the portfolio weights estimates based on the conditional mean, volatility and
Sharpe ratio. The figure shows the time series of optimal weights, w; = (u; + 02/2)/(yo?), where
v represents the risk aversion parameter, and u; and o, are the quarterly estimates of the con-
ditional mean and conditional volatility respectively. The figure shows the optimal weights based
on OLS techniques (blue) and the model based on nonlinear latent variables, assuming a pos-
itive risk premium (red) and v = 5. The vertical bars represent the NBER recession dates.
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