

Governing Sustainability in the Maritime Supply Chain

International SSHRC Partnership Workshop April 10-11, 2017 Sauder School, UBC

Potential Research Areas

- 1. Designing incentive contracts for co-investment in greening technology
- 2. Risk Allocation and Supply Chain Sustainability

"Ship owners, who would normally borrow for such upgrades, do not benefit from lower fuel bills. It is the firms chartering the vessels that enjoy the savings. But their contracts are not long enough to make it worthwhile to invest in green upgrades." Economist March 11, 2017

- This statement was contained in a recent article discussing green finance for dirty ships
- The article implied the fundamental problem with charter contracts is they were too short for ship owners to invest in upgrades to reduce fuel use and pollution
- Solution: proposed by an NGO is "share the fuel savings between the ship-owner and the charterer over a longer contract, giving both an incentive to make the upgrades."
 - Is this a feasible solution?
 - What are the economic issues here?

Is there a problem?

- Ocean Vessels carry 90 percent of world's trade but produce 3 percent of green house gases ©
- 15 largest vessels burning heavy oil produce more of the noxious oxides of nitrogen and sulphur than all the world's cars put together -
- IMO has agreed to cap emissions for Sulphur from 2020.
- Without upgrades ships will not be usable (banned?), firms will fail, banks will suffer (fail?) since they have lent \$400 Billion for these ships

Markets for Vessel Capacity

Charter rates are subject to laws of supply and demand

Dry Time Charter Estimates

ALIBRA Shipping Limited					Rates updated Wednesday: 22 March 2017 NB Rates may differenciate in Weekly Market Report sent out on Fridays							
DRY TIME CHARTER ESTIMATES (\$/pdpr)												
SIZE	6 MOS				1 YR				2 YR			
PERIOD	A	TL		PAC		ATL		PAC		ATL	P	AC
HANDY (32k dwt)	<u>~</u> 7,	,900	-	7,250	-	8,000	-	7,250	-	8,000	-	7,500
SUPRA (56k dwt)	- 9 ,	,250	-	8,500	_	8,750	-	7,750	-	8,100	-	7,900
ULTRA (62k dwt)	- 9,	,400	-	8,700	0	9,000	0	8,000	-	8,300		8,100
PANA/KMAX (76k-82k dwt)	- 1	1,000	•	10,250	-	10,500	-	10,250	-	11,000	-	10,500
CAPE (170k dwt)	<u>~ 14</u>	4,500	_	14,500	•	14,750	•	14,750	•	14,500	•	14,500

Weekly Tanker Time Charter Estimates

ALIBR Shipping Limited		Rates updated Wednesday: NB Rates may differencie Full repo					
WET TIME CHARTER ESTIMATES (\$/pdpr)							
SIZE	1 YR	2 YR	3 YR	5 YR			
HANDY (40dwt)	11,000	= 11,500	= 12,500	= 13,750			
MR IMO3	13,500	= 13,250	= 14,500	- 15,500			
LR1	= 13,000	13,850	15,000	= 17,500			
LR2 (115 dwt cpp & dpp)	= 16,000	16,500	19,000	2 0,000			
AFRA (115dwt)	15,750	16,250	18,000	19,500			
SUEZ	19,000	2 0,000	= 23,500	= 24,000			
VLCC	▼ 26,000	27,500	▼ 30,000	- 32,500			

From 2-3 Years	from 3 to 5 years		
9%	10%		
9%	7%		
8%	17%		
15%	5%		
11%	8%		
18%	2%		
9%	8%		
	9% 9% 8% 15% 11% 18%		

Financing Upgrades for 'Dirty' Ships

- The market will establish charter rates
- Vessel owner will earn a return contingent on charter rates
- Scenario A: market robust (derived demand), charter rates high, vessel owner can invest in clean technology, reduce fuel costs, obtain a return on the investment, charterer has less incentive for long term contract since rates may come down in the future, how do you design the right incentive contract? Or do you need to?
- Scenario 2: Commodity markets are weak, we may have reached peak trade, charter rates are soft and getting softer. Vessel owner could invest in clean technology and save on fuel costs but charter rates will not cover the costs of the investment, failure to invest means absorbing some costs to remain competitive in a soft market.

What is the point and what are the research questions?

- IMO can set rules (emission standards) that may impact available capacity; ports can do the same things
- Marginal vessels will be retired
- Market sets charter rates and shippers are price elastic (in competitive market)
- Charter markets are efficient, spot markets ensure arbitrage occurs quickly
- Are there any conditions under which a vessel owner and shipper could engage in a long(er) term contract to co-invest in cleaner technology recognizing two forces are at work – market DD & SS and exogenous influences (e.g. IMO, Port Pricing)
- Or should we be pricing the externality which would incentivize vessel owners to invest in clean technology (what happens to the revenue matters)

Other Areas for Research-Green Shipping-cont'd

- Can risk allocation have an impact on incentives for safety and reducing environmental risk?
 - "The optimal allocation of risk in transporting environmentally dangerous materials utilizes both tort liability and regulation; regulation should incent shippers to invest in or choose structurally safe vehicles affecting severity of an incident and tort liability should incent carriers to minimize the likelihood of an accident. This will result in an economically efficient allocation of risk."
 - Yesterday we heard some discussion of combining public and private investments (e.g. spill protections on inland routes)

Risk allocation and Co-Investment cont'd

- Underlying economic issues
 - incentives for care- likelihood and severity of accident
 - Efficient activity levels volume of shipping
 - Insurance availability rule directs risks of accident damages to parties that can most efficiently bear the risk can shipper obtain liability insurance at lower or higher cost than carrier (including self insurance)?

Efficiency has three dimensions:

- Efficiency of rules to generate the right incentives for precautionary investment or **care** to reduce probability and severity of an accident
- Efficiency of activity or volume of shipments
- Efficiency in allocating risk bearing (liability risk)

Research Issue

Two ways of thinking about risk allocation: Public Markets versus Private Markets

Points: there is an externality and 'best' means full costs of bearing risk minimized

- 1. Regulations set vessel parameters, public investment establishes a level of protection
- 2. Regulations set vessel parameters, carrier bears risk and sets socially efficient prices and Insurance markets will provide efficient level of liability coverage

Market Failure in Early Adoption

- 1. Lack of incentives for early adoption of technologies to reduce environmental damage
- 2. How do we encourage risk taking in other industries?
- 3. Can collaboration provide a partial solution or can it lead to 'beggar thy neighbour' approach (e.g incentivize green strings which shifts dirty vessels elsewhere)
- 4. What 'bank' pays for early adopters? (revenue neutral pricing or public purse?)

Discussion?

david.gillen@sauder.ubc.ca