

SHIPS' LIFE CYCLE

Life phases: Stakeholders:

Design
 Designer/builder

Construction Designer/builder

Operation Owner & operator

Disposal Opportunist

Past/present:

- Cheap resources / energy → defines the current coupling between the life phases
- Search for minimum freight rates
- Recently air & water pollution in focus, primarily in operation

Future:

- Energy/materials not perceived cheap anymore (+ CO₂ tax)
- More profound awareness of the impacts on the environment
- Cost, environment & society intertwined

TOTAL SYSTEM THINKING

- Each phase has its own environmental impact
- Currently, the most interest is on the operations phase (IMO, ICCT, independent studies)
- Actions in one phase affect the impact in other phases
- Design phase defines the "range of flexibility" during the life
- Current flexibility (defined in design) is insufficient to react to the changes 20-30 years ahead
- New technologies available or emerging, beyond the ones typically considered

REQUIREMENTS AND AVAILABLE SOLUTIONS FOR EMISSIONS REDUCTION

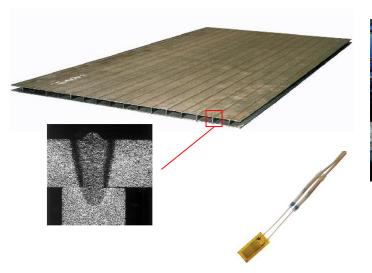
MARPOL Annex VI, Chapter 4 adopted July 2011, which entered into force in January 2013

Regulations enter into force for over 94% of world fleet	EEDI requires new ships to meet agreed efficiency targets	New ships must improve efficiency 10%	New ships must improve efficiency up to 20%	New ships must improve efficiency 30%	
Ship Energy Efficiency Management Plan (SEEMP): mandatory implementation for all ships		20% CO ₂ reduction per tonne/km (industry goal)			50% CO ₂ reduction per tonne/km (industry goal)
2013 —	2015	2020	2025	2030	→ 2050

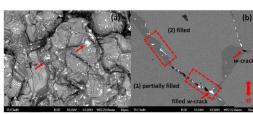
~60% technical solutions available or under development to reach that 50% CO₂ reduction by 2050:

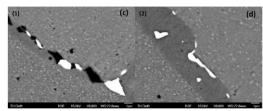
Propeller polishing
Autopilot upgrade
Water flow optimization
Weather routing
Propeller upgrade
Hull cleaning
Air lubrication

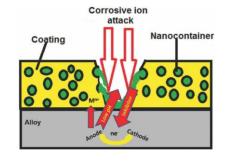
Wind power
Hull coating
Waste heat reduction
Speed reduction
Main engine retrofits
High-efficiency lighting
Solar panels

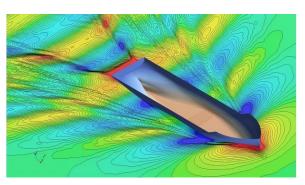

STRUCTURAL DESIGN

- Ferries, cruise ships, naval ships, container ships:
 - 40-50% of the displacement comes from steel
 - Progress in materials selection, welding techniques, construction methods, structural health monitoring
 - High-quality steel products (or some other)
 - Allowing prolonged life
 - Re-use of structural components (instead of scrapping)
 - Composite materials:
 - Lightweight
 - Not recyclable yet (to be burned in the end, or use toxic chemicals to dissolve)
 - What is the sustainable way to reduce the structural weight?




ADVANCES IN STRUCTURAL DESIGN







DESIGN FOR FLEXIBLE OPERATION

- Life span of a ship what is the optimum?
 - Currently <u>25</u>-40 years
 - Longer lifespan, high quality / shorter lifespan, low quality
 - Given the new opportunities, where is cost optimum, environmental impact optimum? Where will it be in the future?
- If the life span is to increase, how to provide larger flexibility to ship owner / smaller volatility to market conditions:
 - Modular design
 - Re-use of ship systems and materials
 - Anticipation of change (cargo, route, fuel sources, etc.)
 - Adoptable hull shape (resistance, fuel savings)
 - Adoptable machinery system / fuel source
 - Can the additional costs be justified?
 - What is the "CO₂ tax" which would justify the use of new technologies leading to reduction of emissions in the whole life cycle?

