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Álvaro Parra
UBC

Javier Suarez
CEMFI and CEPR

May 20, 2019

Abstract

In a dynamic model of innovation in which today’s entrants are tomorrow’s incum-
bents, we study the long-term outcomes emerging from the interaction between the
ex-ante screening conducted by a patent office and the ex-post enforcement car-
ried out by courts. The granting of a patent and its future enforcement provide
incentives for firms to innovate. However, the enforcement of previous patents on
which the firm might build on hinders innovation. To characterize the global effect
of patent protection we solve for the long-run steady state equilibrium of the model
and study the screening incentives faced by the patent office and the enforcement
incentives faced by judges. Although a patent office and judges are assumed to
maximize welfare, their incentives and instruments at their disposal differ. Whereas
the patent office deals with every patent application, a judge deals with individual
cases and only after an infringement claim has been made. We show that, when
judges are expected to make mistakes, the patent office chooses to allow the patent-
ing of low-quality easy-to-challenge innovations in order to induce entry, foster R&D
activity, and improve long-term welfare. An individual judge perceives other judges
as strategic substitutes. We show that depending on the patent office’s screening
level, judges may either exert more or less effort than the socially desirable level.
In equilibrium, depending on the model parameters, the patent office and judges’
effort may be strategic complements or strategic substitutes.

JEL Codes: L26, O31, O34.
Keywords: Intellectual Property, Innovation, Imitation, Patent Screening, Patent
Enforcement, Industry Dynamics.

∗This work is based on a previous paper entitled “Entrepreneurship Innovation, Patent Protection,
and Industry Dynamics.” Financial support from the European Commission (grant CIT5-CT-2006-
028942) and the Spanish Ministry of Science and Innovation through the ECO2008-00801, the Consolider-
Ingenio 2010 Project “Consolidating Economics” and the Regional Government of Madrid through grant
S2015/HUM-3491 is gratefully acknowledged. Address for correspondence: CEMFI, Casado del Al-
isal 5, 28014 Madrid, Spain. Tel: +34-914290551. Fax: +34-914291056. Email: llobet@cemfi.es,
suarez@cemfi.es.



1 Introduction

The proliferation of patents in highly technological markets makes entry of new firms dif-

ficult, among other reasons, because of the risk of infringing some patents. One example

is the market for smartphones, in which producers are entangled in endless legal bat-

tles.1 Some practitioners doubt about the effectiveness of the patent system in generating

the right incentives to innovate and refer to this problem as the “tragedy of the anti-

commons,” describing strategic patenting and patent stacking as obstacles to innovation

(Heller and Eisenberg (1998)).

Patent proliferation has been spurred by the strong protection of innovators’ intellec-

tual property rights (IP), especially in the United States. It has been argued that the

creation of a unique Court of Appeals of the Federal Circuit in 1982, as well as the 1984’s

Semiconductors Act and the extension of patent duration to 20 years, strengthened the

protection of IP. However, whether these reforms have really promoted innovation is the-

oretically and empirically controversial.2 In fact, some quantitative assessments indicate

that these reforms may have been detrimental to innovation (Levin et al. (1985), Hall and

Ziedonis (2001)).

In this paper we study the effects of the protection of intellectual property rights in a

tractable industry dynamics model. We focus on the effects on the speed of innovation and

on social welfare in markets in which entrants face uncertainty on whether their product

might infringe some of the existing IP rights. We consider an industry made up of a

continuum of business niches where each niche can be thought of as a distinct product.

The successful developers of improved versions of each product contribute to welfare and

appropriate temporary monopoly profits like in a standard quality ladder model with limit

pricing (Grossman and Helpman, 1991). These temporary monopolies are based on the

protection granted by IP and are threatened by the entry of the developers of even better

versions of the product (innovators) as well as imitators.

1See “The Great Patent Battle,” The Economist, 10/21/2010.
2See Gallini (2002) for a review of the reforms and their effect on patenting activity.
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The success of the genuine innovators is compromised by the competition coming

from the opposition of incumbent monopolists, who use their IP to fight off entrants.3

Patent protection against future innovation in this case constitutes a double-edged sword.

Prospective entrants anticipate that in markets in which more incumbents hold patents

conflicts with them will be more inevitable and the resulting profits will tend to be lower;

this discourages their entry. However, if the firm can surmount this barrier, stronger

protection extends incumbency and provides additional incentives to innovate.

Patent protection against imitation also has two effects on innovation. As in the

previous case, it extends incumbency of genuine innovators who benefit from monopoly

profits. Successful imitation, however, by eliminating some incumbent patent holders

reduces the barriers to entry that future innovators face as they are more likely to access

unprotected market niches.

In the paper we show that in a frictionless environment the First Best provides max-

imum protection against imitation and no protection against further innovation. Inter-

estingly, when the incumbent is granted some protection against further innovation, it is

optimal to reduce the protection against imitation. The reason is that successful imitation

helps eliminate entrenched incumbents that might fend off future innovators.

The second part of the paper provides a model that endogenously determines the

protection that patent holders obtain. In this model, a Patent Office decides the screening

it carries out on the patent applications received. Insufficient screening translates into

some imitators obtaining a patent that they can use to fight off the incumbent in the

niche where they aim to operate. The conflict between these two firms as well as the

conflict that may arise between an incumbent fighting a genuine innovator are resolved

by a judge.

Each court case is decided by a (bayesian) judge aiming to find out whether the

potential entrant is a genuine innovation or an innovator that was not screened out by the

3We assume that the strength of IP protection affects the incumbents’ probability of expelling the
innovators and imitators who challenge their business niches. This modeling allows us to abstract from
the traditional distinction between patent length and patent breadth (Scotchmer (2004)).
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Patent Office. Judges entertain a prior probability that an entrant is a genuine innovator

based on the screening decision of the Patent Office. However, figuring out more precisely

the nature of the entrant requires incurring costly effort that the judge weights in relation

to the potential benefits. These benefits arise from avoiding Type-I and Type-II errors.

Type-I errors arise when the judge’s prior that the entrant is an imitator is high and

should not be allowed but, instead, it is a genuine innovator that is deterred. Type-II

errors arise when a judge’s prior indicates that the entrant is likely to be an innovator who

should replace the incumbent but, instead, it is an imitator that occupies the niche. Of

course, these costs are a function of the decisions carried out by future judges in the same

niche. This creates a dynamic problem for which we characterize the equilibrium level of

effort and we provide conditions under which these efforts are strategic complements or

substitutes.

Finally, we embed the decisions of the judges into the choice of the level of screening

of the Patent Office. That is, the Patent Office can choose whether to engage in costly

screening itself or, instead, rely on the work of future judges who will be later required

to decide on specific cases. In those situations in which judges endogeneously exert high

effort and, as a result, are likely to take the right decision the level of screening of bad

patents will be lower.

The rest of the paper proceeds as follows. Section 2 introduces our baseline industry

dynamics setup, analyzing its equilibrium and steady-state properties. It also explores

the welfare implications of IP protection when the behavior of courts and the Patent

Office is taken as exogenous. Section 3 studies the endogenous screening decision of the

Patent Office while Section 4 analyzes the trade-offs that individual judges face and their

equilibrium behavior. Section 5 generalizes the model and studies the robustness of our

results. Section 6 concludes. All proofs are relegated to the appendix.
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2 The Baseline Model

2.1 Set Up

We characterize the evolution of an industry in a discrete-time model with discount factor

β < 1. This industry is comprised of a continuum of business niches of measure one. Each

niche can be interpreted as the market of a different product.4 Every niche is protected by

a patent. Niches can be divided in two categories depending on the degree of competition.

A monopolized niche is one in which the latest innovation was novel; i.e., the innovation

substantially improved upon the existing product. In a monopolized niche the incumbent

earns a per period profit flow of π > 0. A competitive niche is one in which the latest

innovation turned out to be obvious; i.e., the innovation did not provide a meaningful

improvement over the existing product (e.g., an imitation). Due to competition, firms

participating in competitive niches earn zero profits.5 At each date t we denote the

proportion of monopolized niches by xt ∈ [0, 1].

Firms in monopolized niches might lose their incumbency status because they have

been imitated by an obvious innovation or successfully replaced by an innovator that

holds a patent for a superior substitute product. In every period t these firms arise from

a measure et of potential entrants which develop a new product (innovation) and apply

for a patent. Entry has a cost normalized to 1. With probability α the innovation of a

potential entrant is novel. With probability 1 − α, the innovation is obvious. A patent

office screens all applications and decides whether to grant a patent. We assume that

every novel innovation is granted a patent, whereas a proportion λ of obvious products

succeed in the application. Only innovations that receive a patent can enter a niche.

Entrants only learn about the quality of their patent when they reach the market. The

entry of these firms is untargeted; consequently, the probability that an entrant at t lands

4This simplification allows us to abstract from cross-product competition and to focus on competition
related with concomitant and future entry into each niche.

5 In Section 3 models competition in each niche as a quality ladder under price competition for a
single unit of good (Grossman and Helpman, 1991). Under zero marginal cost of production, profits (and
prices) are equal to the quality improvement brought to the market by the innovator. Novel innovations
increase the quality by π and obvious innovators by zero.
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in a monopolized niche is xt.

Entry on a niche can be fought by filing an infringement claim. We assume that

litigation is costless but, whenever indifferent, the incumbent does not file a lawsuit. This

means that only incumbents that might obtain a future stream of profits—i.e., incumbents

in monopolized niches—will engage in litigation. Judges review the infringement claims

and make a probabilistic decision. If the judge rules in favor of the incumbent, the firm

preserves its monopoly status and the entrant’s innovation goes to waste. If the judge

rules in favor of the entrant, it replaces the existing incumbent and receives a profit flow

according to the quality of its innovation. When the entrant’s innovation is novel, a judge

rules in its favor with probability µ1. Obvious entrants succeed with probability µ0. We

assume that µ1 ≥ µ0. To ease the exposition, we initially model the variables governing

the decisions of the patent office and judges as exogenous parameters. In later sections

we endogenize the behavior of both types of agents.

Under these assumptions, the value of being the incumbent in a monopolized niche at

date t—if it has not been infringed or infringement has been fend off in court—that we

denote as vt can be recursively written as

vt = π + β[1− et+1(αµ1 + (1− α)λµ0)]vt+1. (1)

That is, the present value of the monopoly profits that a patent yields corresponds to a

current flow of π and a discounted future value, βvt+1, that is weighted by the probability

that at date t + 1 the incumbent surmounts the entry of both types of innovators. The

law of motion for the proportion of monopolized niches, xt, can be written as

xt+1 = [1− et+1(αµ1 + (1− α)λµ0)]xt + αet+1[1− xt(1− µ1)]. (2)

The first term of this expression accounts for the proportion of monopolized niches at

t, xt, that either are not challenged by entry or survives the challenge of an entrant.

The second term accounts for the competitive niches that become monopolized by novel

innovators at t and the previously monopolized niches that are simply replaced by another

novel patent.
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The measure of innovating firms et is determined as follows. At each date there is

an infinite number of potential innovative entrepreneurs who may attempt to engender

and develop an innovation. Entry, and its associated development cost, occurs at the

beginning of the period before production (and profits) take place.6 To profitably enter

a monopolized niche, a novel innovator has to overcome the opposition (in court) of

the incumbent monopolist. A novel innovator that challenges a competitive niche faces

no opposition of existing firms, becoming a monopolist with probability one. Thus, an

innovator’s (ex-ante) probability of success in becoming a monopolist at date t can be

written as

pt = α[1− xt(1− µ1)], (3)

where α is the probability of obtaining a novel innovation and 1− xt(1− µ1) corresponds

to the probability of landing in a competitive niche, 1−xt, plus the probability of landing

on a monopolized niche xt times the probability of wining in court µ1.

Finally, the mass of innovations subject to development at any date t, et, is governed

by a free-entry condition. That is, every period in equilibrium the net gain from entering

and developing an innovation must be non-positive; i.e., −1 + ptvt ≤ 0. If this inequality

is strict, no innovations are developed in the corresponding date and the innovation flow

et must be zero. We summarize this requirement in the following equation,

et[−1 + ptvt] = 0, (4)

to which we will refer as the complementary slackness condition.

2.2 Steady State Equilibrium Analysis

In this section we define the dynamic equilibrium of the industry and analyze its steady-

state properties. Equilibrium conditions determine four key endogenous variables at each

date t: the flow rate of entry et, the proportion of monopolized niches xt, the probability

6Opposite to classical models in the patent-race literature (e.g., Loury (1979) and Lee and Wilde
(1980)), we abstract from the timing of innovation.
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that an innovator becomes a monopolist pt, and the value of being a monopolist vt. We

denote the steady-state value of these variables with the subscript ss.

The next assumption restricts the parameter values for π so that the solution is interior

and the discussion of the model is meaningful. The following lemma characterizes the

steady-state equilibrium of the model.

Assumption 1. π ∈
(

1−β
αµ1

, 1
α

(
β + (1− β) α+(1−α)λµ0

αµ1+(1−α)λµ0

))
.

Lemma 1. There exists a unique steady-state equilibrium with ess ∈ (0, 1) if and only if

Assumption 1 holds. This equilibrium is given by vss = p−1ss ,

xss =
α

α + (1− α)λµ0

, (5) pss = α
αµ1 + (1− α)λµ0

α + (1− α)λµ0

, (6)

ess =
πpss − (1− β)

β (αµ1 + (1− α)λµ0)
. (7)

In equilibrium, entry occurs until the expected value of developing an innovation,

pssvss, equals the entry costs. It is interesting to observe that despite the fact that entry

affects the proportion of monopolized niches and the value of participating in the market,

in steady state both of these values are not affected by the payoff parameter π. That is,

an increase in the expected-discounted payoffs is completely absorbed by increased entry;

the values of xss and vss remain unchanged. In the expressions above, λ and µ0 always

appear together; λµ0 represents the rate at which obvious innovation successfully enters

a niche. The next proposition summarizes the main comparative statics of the model.

Proposition 1. In a steady-state equilibrium with interior ess, the effects of marginal

changes in the parameters on the steady-state variables xss, vss, and ess have the signs

shown in the following table:

π β α λµ0 µ1

xss 0 0 + − 0
pss 0 0 + + +
vss 0 0 − − −
ess + + + ? +
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The proportion of niches served by firms holding valid patents, xss, is increasing in α

and decreasing in λµ0. In the steady state, the proportion of monopolized niches reflects

the composition of the pool of entrants that receive a patent. As a result, the higher the

proportion of entrants with genuine innovations the bigger the proportion of niches that

they will occupy. In the other direction, the higher the probability that a firm with an

invalid patent arises and it is allowed to produce, (1−α)λµ0, the more often valid patent

holders will be challenged and defeated in court.

The effect of the previous parameters on the value vss is inversely related to pss as, by

free entry, pssvss = 1. The probability of entering the market profitably pss is increasing in

both the value of obtaining a novel innovation α and the probability that such innovation

is upheld by courts, µ1. Perhaps surprising, pss is also increasing in the rate that obvious

innovation enter a niche λµ0. This occurs as a higher success rate λµ0 decreases the

proportion of monopolized niches xss, increasing the probability that an novel innovator

lands in a competitive market and is not contested in court.

As expected, entry increases in the flow of profits and the discount factor. An increase

in judges’ probability of ruling in favor of a novel innovator, µ1, or in the probability of

obtaining a novel innovation, α, foster entry, as they makes entry more likely to succeed.

However, the effect of λµ0 is in general ambiguous and it is characterized in the next

proposition.

Proposition 2. In a steady-state equilibrium, the effect of an increase in the entry rate of

obvious innovations λµ0 on entry ess can be increasing, decreasing or inverted-U shaped.

In particular, it is decreasing when µ1 = 1.

The previous result points to an interesting non-monotonic relationship between entry

and the protection that incumbents receive against obvious innovations. The main driver

behind this result is that a change in λµ0 conveys two effects of opposite signs. On the

one hand, an increase in λµ0 fosters entry—through the decrease in xss—as it reduces

the number of innovations challenged in court. On the other hand, an increase in λµ0
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Figure 1: Entry is maximized at an interior value of λµ0.

Notes: Parameter values are α = 0.1, π = 2.4, β = 0.8, and µ1 = 0.85.

decreases the value of vss because the expected duration of incumbency is reduced, as

incumbents become more likely to be replaced by obvious innovators.

It can be shown that when the probability of success in court of an entrant with a

novel innovation (µ1) is close to one, the second effect dominates and entry monotonically

decreases with λµ0. When µ1 = 1, novel innovators are indifferent between landing in

monopolized or competitive niches, as they are granted access regardless. This makes the

benefit of increasing the number of competitive niches irrelevant and, consequently, only

the lower value-of-incumbency effect persist. As illustrated by Figure 1, however, for lower

values of µ1 the first effect may dominate when λµ0 is low. In those cases, the innovation

flow is maximized at some interior value λµ0. These results imply non-trivial trade-offs for

our discussion below on the socially optimal level of protection against imitation, 1−λµ0,

and its link to the socially optimal level of protection against innovation, 1− µ1.

3 The Patent Office

In this section we study the patent office screening problem. We first assume that the

office takes the judges’ decisions parameter µ0 and µ1 as given. In the next section we

endogenize judges’ decision and study the interaction between both institutions.

We assume that the Patent Office goal is to maximize society’s welfare. In order to
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perform a meaningful welfare analysis, we need to formalize the demand side of the indus-

try. We do this along the lines of a standard quality ladder model with limit pricing.7 In

particular, we assume that there is a unit mass of infinitely-lived homogeneous consumers

willing to buy at most one unit of the product from each niche j ∈ [0, 1] at each date t.

Utility is additive across goods and dates, the intertemporal discount factor is β < 1, and

the net utility flow from buying good j at price Pjt is Ujt = Qjt − Pjt, where Qjt is the

quality of the good. For simplicity, production costs are assumed to be zero.

The successful entry of a novel innovation in a given niche improves the quality of the

best good available in that niche by π units. The novel innovator, however, is able to

charge a price Pjt = π that captures the full quality advantage of their product vis-a-vis

the best competing alternative. In contrast, the successful entry of an obvious innovation

(imitator) introduces competition for latest technology, decreasing the market price Pjt

to zero, transferring the benefits to consumers.

In this environment, the total per-period welfare in steady state is equal to

W = ess

(
pss

π

1− β
− 1− κ(λ)

)
, (8)

where κ(λ) represents the cost of screening a patent application, which is continuously

differentiable, convex, satisfying κ(1) = κ′(1) = 0 and κ′(0) = −∞. Every period ess

innovations take place at a cost of 1. Because only novel innovations increase the quality

of existing products and innovations only reach the market if the innovating firm manages

to win in court, each innovation gives society benefits with probability pss. Finally, the

rents associated with successful novel innovation are the present discounted value of a

perpetual increase in quality π. These rents are split between firms and consumers. When

the innovation arrives the rent is perceived by the innovating firm. When the innovating

firm is replaced, either by a novel or an obvious patent, the rents of the incumbent are

competed away and the benefit of the increase in quality is accrued to consumers. In

7In section 5.2 we discuss an alternative market environment where firms invest in cost-reducing
innovations. Unlike in the quality ladder model, that case exhibits a dead-weight loss derived from
market power and we analyze its implications.
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the absence of screening costs (i.e., κ(λ) = 0), the free-entry condition (4) implies that

the parenthesis in (8) is always positive.8 Thus, the net effect of innovation in society

is positive as long screening cost are not prohibitively high. We will assume so for the

remainder of the paper.

The Patent Office chooses the value of λ that maximizes W taking the courts’ behavior

as given. The derivative of the welfare function with respect to the screening rate λ is

(recall that λ = 0 represents maximal screening):

∂W

∂λ
=
∂ess
∂λ

(
pss

π

1− β
− 1− κ(λ)

)
+ ess

(
π

1− β
∂pss
∂λ
− κ′(λ)

)
. (9)

The level of screening of a patent office directly affects welfare through two channels: it

determines entry and the probability of success. From Proposition 1 we know that pss is

increasing in λ. That is, for a given entry flow ess, a lower level of screening increases the

proportion of competitive markets, reducing the number of novel innovations challenged

in court, decreasing the number of innovations that go to waste. From Proposition 2 we

know that the net effect on entry can be ambiguous depending on the courts decisions.

Proposition 3. In the absence of screening costs (i.e., κ(λ) = 0 for all λ), the patent

office maximizes welfare by setting: i) λ = 0, if µ1 = 1; ii) if µ1 < 1, when interior,

λ∗ = α
2(1− β) + (1− 3µ1)απ + (1− µ1)

√
απ(απ + 8(1− β))

2µ0(1− α)(απ − (1− β))
(10)

If perfect screening of obvious patents were infinitely costly, the optimally screening

is naturally interior. Proposition 3 goes further by saying that, even in the absence of

screening costs, the patent office may want to allow obvious patents (imitation). The

intuition behind this result is that obvious patents may foster entry by increasing the

number of competitive niches, thus increasing the probability of success of future novel

innovators. When µ1 = 1, however, no novel innovation goes to waste and the benefit

of increasing pss is nil. Consequently, only the effect of screening on steady state entry

8This is so, as π/(1− β) > vss and pssvss = 1.
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matters. From Proposition 2, we know that entry is decreasing in λ so that the optimal

solution is full screening.

To conclude this section, as a benchmark, we solve the problem of a planner that can

control both the patent office’s screening rate and the judges’ decisions.

Corollary 1. In the absence of screening cost, a social planner that can decide both the

patent office screening rate and the judges’ ruling rates (i.e., max(λ,µ0,µ1)∈[0,1]3 W ) chooses

to fully screen for obvious innovators, either at the Patent office or in court, and to always

rule in favor of the new novel innovator.

This result arises from a combination of the previous results. As shown in Proposition

1, higher values of µ1 yield an increase in the probability that an entrant is successful,

pss, and, consequently, an increase in total entry, ess. Both effects contribute to increase

social welfare, as indicated in equation (9). Hence, a Patent Office that could regulate the

behavior of courts at no cost should choose µ1 = 1. Using Proposition 3 we know that

obvious entrants should not receive any protection in that case; i.e., λµ0 = 0.

4 Endogenous Courts

In the previous sections we assumed that the result of a litigation started by an incum-

bent facing an entrant was governed by the two exogenous probabilities µ0 and µ1. In this

section we endogenize these probabilities as the result of the decision to gather evidence

by the judge that oversees the case. Because judges only make a decision if an infringe-

ment claim is made, we model the interaction between the Patent Office and courts as

a Stackelberg game in which judges make their decisions after observing the screening

rate of the Patent Office.9 We show that when judges best respond to the Patent Office

screening effort, a new incentive to allow obvious innovations appears: it induces judges

to make better rulings.

9Even if the screening rate λ is not publicly announced by the Patent Office, Judges can infer the rate
by simply knowing α and the number of infringement claims made.
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4.1 Signals and Beliefs

Suppose that each infringement claim is overseen by a different and independent judge;

that is, each judge takes the effort of the other judges as given. When a case reaches the

court, the judge in charge does not directly observe the quality of the entrant’s patent.

The judge, however, takes as given the screening rate of the Patent Office, λ. As a result,

the prior belief about the probability that the patent of an entrant is invalid (obvious)

equals to

γ =
(1− α)λ

α + (1− α)λ
∈ [0, 1− α] . (11)

The judge can exert effort to gather evidence and receive a costly signal σ. The

outcome of the signal is binary, σ ∈ {0, 1}. It takes a value zero when the judge finds

no evidence of infringement (indicating that the innovation is likely to be novel) and

one when the judge finds otherwise. The relation between the signal’s outcomes and the

judge’s effort, s, is as follows

Pr[σ = 1|novel] =
1− s

2
and Pr[σ = 1|obvious] =

1 + s

2
.

That is, as effort increases, the signal becomes more precise regarding the true quality of

the innovation of the entrant. If no effort is exerted, s = 0, the signal becomes completely

uninformative.

We assume that judges are pro-entrant. That is, a judge always rules in favor of

the entrant if no evidence of infringement is found, σ = 0. In that case, the entrant

always replaces the incumbent. When the signal produces some evidence of potential

infringement, the judge makes a probabilistic decision equal to its posterior belief

θ ≡ Pr[novel|σ = 1] =
(1− γ)(1− s)

(1− γ)(1− s) + γ(1 + s)
.

Under this decision rule, the implied success probabilities in court for a novel and an

obvious innovator are

µ1(s) = Pr[σ = 0|novel] + θPr[σ = 1|novel] =
1 + s

2
+

1− s
2

θ,

µ0(s) = Pr[σ = 0|obvious] + θPr[σ = 1|obvious] =
1− s

2
+

1 + s

2
θ.

(12)
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As a result, µ1(s) ≥ µ0(s) and this difference grows with the judge’s effort s.

4.2 A Single Judge’s Problem

We assume that each judge decides how much effort to exert in order to maximize social

welfare net of the cost of this effort. When taking the decision, a judge takes the Patent

Office screening rate λ and the effort of other judges ŝ as given. This means that the

judge only takes into account the impact that the particular case under consideration has

in total welfare. To illustrate the difference, although (8) considers the entry cost that

an entrant incurs, a judge ignore these costs. A judge only reviews a case after entry has

occurred. Entry cost of the current entrant are, thus, sunk at the moment in which the

judge makes its ruling.

The impact that a judge has in total welfare can be summarized as the combination

of statistical errors I and II. In particular, we define the Type-I error, EI , as the result

of forbidding the production of a firm with a novel innovation. This error is easy to

characterize. If a judge forbids such a firm to enter, the innovation is never implemented,

reducing social welfare by π on a permanent basis. That is, EI = π/(1− β).

The Type-II error, EII , corresponds to allowing an obvious innovation to replace a

monopolist and turning the niche into a competitive one. Changing the state of a niche

from monopolized to competitive affects the probability of future entry and, consequently,

the stream of future innovations. To derive the Type-II error, therefore, we need to

compute, the present value of social welfare in each state. More precisely, EII = β(wM −

wC), where wM and wC are the present value of the social welfare that a niche generates in

the monopoly and competition state, respectively. The difference in values is discounted

one period, as the stream of entry is affected starting next period. The values wM and

wC are given by the solution to

wC = αess(ŝ)

(
π

1− β
+ βwM

)
+ (1− αess(ŝ))βwC ,

wM = αµ1(ŝ)ess(ŝ)

(
π

1− β
+ βwM

)
+ (1− α)λµ0(ŝ)ess(ŝ)βwC + φβwM .

(13)
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where φ ≡ 1 − ess(ŝ)(αµ1(ŝ) + (1 − α)λµ0(ŝ)). Because a single judge is atomistic, it

takes as given the future decisions of the judges, ŝ. As a result, the probability that an

obvious and novel entrant prevail in court in the future and the future entry rate are also

exogenous for a single judge and denoted in the previous expression as ess(ŝ), µ1(ŝ), and

µ0(ŝ), respectively.

The social value of a competitive niche before entry takes place depends on whether

the niche faces entry of a novel innovator. With probability αess(ŝ), a novel innovation

arrives, providing society an increase in discounted surplus of π/(1 − β), and turns the

niche into a monopolized one starting next period. With probability 1−αess(ŝ) either no

innovation or an obvious innovation arrives, providing no value for society and keeping

the niche as competitive in the next period.

For a monopolized niche, the social value depends on whether it faces entry or not and

the identity of the entrant. With probability αµ1ess(ŝ) a novel innovator enters the niche

and succeeds in court. In this case society receives the social value of a novel innovation

at the beginning of a period π/(1−β) and the continuation value of a monopolized niche.

With probability (1−α)λµ0ess(ŝ), the niche faces successful entry by an obvious innovator,

turning the niche competitive. Finally, in the last term, φ represents the probability that

(successful) entry does not occur, maintaining the niche monopolized.

Solving the previous values allow us to characterize the Type-II error, which, as it

turns out, has a negative sign. Social welfare increases when a niche turns competitive,

as eliminating a monopoly reduces the barriers to entry, fostering future innovation. The

next lemma formalizes this result.

Lemma 2. The steady-state value of the Type-II error is negative and equal to

EII(ŝ, γ) = − π

1− β
(1− γ)αβ(1− µ1(ŝ))ess(ŝ)

(1− γ)(1− β) + αβ (1− γ + γµ0 (ŝ)) ess (ŝ)
. (14)

A judge decides how much effort s to exert in order to minimize the social cost of both
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types of error plus the cost of its effort c(s). That is, a judge solves

min
s∈[0,1]

J(s, ŝ, γ) = (1− γ)(1− µ1(s))EI + γµ0(s)EII(ŝ, γ) + c(s). (15)

For tractability, and in order to obtain analytical results, we assume in the remaining

of this section that the effort is binary, s ∈ {0, 1}. In Section 6, we show that the main

findings are robust to allowing a continuous effort by judges. Without loss of generality,

due to the binary effort assumption, we also assume for the rest of this section that

a judge’s cost of effort is linear in its effort level; i.e., c(s) = c · s. The binary effort

assumption delivers simple expressions for µ0(s) and µ1(s). In particular, we have µ0(0) =

µ1(0) = 1− γ/2 and µ1(1) = 1 > 0 = µ0(1). We now turn to the optimal decision of the

judges on whether to exert effort or not.

Start by noticing that when s = 1, using (15), we have J(1, ŝ, γ) = c for any value

of γ and ŝ. That is, when the signal is fully informative, a judge commits no mistakes

and the only social cost of the its decision is the cost of the judge’s effort. When a judge

decides not to exert effort we have

J (0, ŝ, γ) =
π

1− β
γ(1− γ)

2
Φ(ŝ, γ) (16)

where φ(ŝ, γ) > 0 for all (ŝ, γ) ∈ [0, 1]2 and is given by equation (22) in the Appendix.10 If

the patent office fully screens innovators (i.e., γ = 0; all the entrants assessed by a judge

are novel innovators) or if all innovations are obvious (γ = 1), the bayesian judge can

trivially back out the quality of the entrant without exerting any effort and, therefore,

the right decision is always made. That is, J(0, ŝ, 0) = J(0, ŝ, 1) = 0. For any other value

of γ, J(0, ŝ, γ) is positive, indicating that the judge’s social cost function is non-monotonic

in γ. The next assumption guarantees that the judge’s effort cost is not too high. That

is, for any set of parameters there exists a prior γ that guarantees that the judge prefers

to exert effort.

Assumption 2. c < π/8(1− β).
10The proof of Lemma 3 characterizes the φ(ŝ, γ) function.
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J(0, ŝ, γ)

γ

J
(s

,
ŝ,
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Figure 2: The cost of an individual judge, as function of its prior γ, when making the
optimal choice s given aggregate effort ŝ.

Note: Parameter values are α = 0.1, β = 0.8, π = 2.4, c = 1, and ŝ = 0.6.

Lemma 3. Under Assumption 2, for any value aggregated effort by other judges ŝ ∈ [0, 1],

there exists thresholds γ, γ ∈ (0, 1) with γ > γ such that the judge exerts effort if γ ∈ [γ, γ]

and perform no effort otherwise.11

The informativeness of the judge’s effort depends on the screening level of the patent

office and, indirectly, on the initial composition of the pool of entrants, determined by α.

When the majority of new patent holders are either novel or obvious innovators, the prior

belief changes little with the judge’s effort. In this case, the judge prefers not to exert

effort and simply rule according to that prior. In contrast, when the proportion of novel

and obvious innovators is balanced, a judge’s effort becomes valuable and more effort is

exerted to better screen innovators.

Figure 2 depicts the judge’s problem. The parabola depicts the judge’s cost of not

exerting effort as a function of its prior γ —which is induced by the Patent Office screening

rate λ. The cost of full effort is represented by c = 1. The cutoffs γ and γ are represented

by the points where c intersects J(0, ŝ, γ). The solid line shows the minimal cost for the

judge for each level of screening rate γ. It is interesting to observe that depending on the

11When a judge’s prior γ takes either of the values {γ, γ}, an individual judge is indifferent between
exerting effort or not. We break this indifference by assuming that judges exert effort.
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initial screening rate, the Patent Office’s effort and the judge’s effort could be strategic

complements or substitutes from the judges’ perspective. Since from (11), γ increases

in λ, an increase of the screening rate at γ (i.e., a lower λ) decreases the judges’ effort

indicating strategic substitutability. In contrast, for values of γ above γ, an increase

in patent screening can raise the effort performed by judges; an instance of strategic

complementarity.

Lemma 4. For a given prior γ ∈ (0, 1) and aggregated effort by other judges ŝ ∈ [0, 1)

the cost of exerting no effort J(0, ŝ, γ) increases with: a reduction in the probability of

novel patent α and a raise in the value of a novel innovation π/(1− β).

To conclude this section, we explore how the main parameters of the model affect’s

a judge’s effort decision. The cost of making mistakes increases when novel innovations

become scarce or the value of novel innovation—i.e., the scale of the cost of making

mistakes (see eq. (16))—increases. In both situations the range of screening rate under

which the judge performs full effort [γ, γ] widens.

4.3 Aggregated-Judge Equilibrium

The analysis in Lemma 3 refers to a single judge, taking the behavior of other judges, ŝ, as

given. We now proceed to characterize the steady-state symmetric equilibrium by finding

the effort level of an individual judge s∗ that is consistent with the aggregate behavior of

all the judges. Before characterizing the equilibrium observe that the pair of thresholds

(γ, γ) are a function of the conjectured level of effort by the other judges ŝ and the cost

of effort c. To construct the equilibrium at the aggregate level we need to develop an

understanding of how aggregate behavior, ŝ, affects effort by an individual judge.

Lemma 5. For a given prior γ, aggregated judge effort is a strategic complement to

individual judge effort if ŝ > (1 − √γ)/(1 +
√
γ) ∈ [0, 1] and it is a strategic substitute

otherwise.
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Similar to the Patent Office’s screening rate, aggregated effort by other judges can

encourage or deter effort by a single judge. Strategic complementary occurs when J(s, ŝ, γ)

is increasing in ŝ, as an increase ŝ would induce full effort by an individual judge for a wider

range of γ (in Figure 2 this would be represented by an upward shift of the parabola).

In contrast, strategic substitutability calls for coordination at lower levels of effort. From

Lemma 5, we can see that aggregated effort is a strategic complement to individual effort

when ŝ = 1 and strategic substitute when ŝ = 0. Which implies that judges may face a

coordination problem as stated in the next lemma.

Lemma 6. When aggregated effort is binary, γ(1) < γ(0) and γ(1) > γ(0).

Compared to no aggregated effort, when aggregated judges coordinate in high effort,

an individual judge will also perform high effort for a large range of γ. This creates a

coordination problem for some priors, engendering a multiplicity of equilibrium as stated

by the next proposition.

Proposition 4. The set of equilibria in the aggregated-judge game, as a function of the

judges’ prior, is given by:

s∗ =


0 if γ < γ(1) or γ > γ(1),

1 if γ ∈ (γ(0), γ(0)),

{0, 1} if γ ∈ [γ(1), γ(0)] ∪ [γ(0)), γ(1)].

.

Figure 3 illustrates Proposition 4 by depicting the aggregate behavior of judges ŝ∗ as

a function of the patent office screening rate γ. When the proportion of obvious patents

is very low, judges find that the incremental benefit of their effort is small. Judges exert

no effort and rule according to their prior, which is favorable to entrants. As the pool of

patents becomes more mixed, individual judges face increasing incentives to exert effort.

In the range (γ(0), γ(0)] judges perform maximum effort and make no mistake in their

rulings. As γ increases further and the pool of patents consists mostly of obvious patents,

the benefit of the judges’ effort starts to decrease. For very high values of γ, judges

coordinate in no effort and rulings tend to favor incumbents.
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Figure 3: Equilibrium judge effort as a function of γ.

Note: Parameter values are α = 0.9, β = 0.8, and π = 2.4.

Lemma 7. When multiple equilibria exists, the high effort equilibrium is welfare dominated—

from the perspective of problem (15)—by the no effort equilibrium.

Consider a screening rate with multiple equilibria. When judges coordinate in high

effort, its social cost is equal to the the cost of its effort, c. Because a single judge can

always unilaterally deviate to high effort and obtain a social cost of c, it has to be the

case that the no-effort equilibrium is payoff dominant (in the sense that induces a lower

social cost) with respect to the high effort equilibria. For the next section we apply

the refinement that judges coordinate in their payoff dominant equilibria, which in this

context means: s∗ = 1 if γ ∈ [γ(0), γ(0)] and s∗ = 0 otherwise.

4.4 Screening and Enforcement Equilibrium

In this section we characterize the screening decision of the Patent Office once the best

response of the court is internalized. That is, the Patent Office maximizes (8) given the

aggregate behavior s∗(λ) of the judges. Observe that (8) ignores the judges’ cost of effort.

We do so for two reasons. First, it is the natural benchmark to the original exercise in

Section 3. Also, this eases exposition by isolating a new incentive. The next section

studies the relation between the Patent Office and courts when the effort of judges is

20



continuous and the patent office fully incorporates the costs of the court.

Conditional on no effort by the judges (s∗ = 0)—that is, ignoring the best response

of the judges—problem (8) delivers an screening level λ◦ which is interior due to the

assumptions in κ(λ). Conditional on choosing a level of λ that induces high effort by

judges, both the probability of entry pss = α and the entry level ess = (απ − 1 + β)/αβ

are maximal and do not depend on the level of screening λ. Thus, the problem of the

Patent Office becomes

max
λ∈{λ:s∗(λ)=1}

W =
απ − (1− β)

αβ

(
α

π

1− β
− 1− κ(λ)

)
.

It is clear that from this problem, conditional on high effort by judges, the patent office

chooses the lowest feasible screening rate, which in terms of judges’ priors, corresponds

to γ(0). Call this screening rate λ. Next proposition characterizes the screening and

enforcement equilibrium.

Proposition 5. If λ◦ ≤ λ, the screening rate set by the patent office is λ and judges exert

high effort s∗ = 1. If λ◦ > λ, the screening rate set by the patent office depends on the

degree of convexity of κ(λ). When κ(λ) is not too convex, λ is optimal and judges exert

high effort s∗ = 1.

The convexity requirement for κ(λ) to induce effort by the judges is made explicit in

the appendix. The previous proposition extends Proposition 3 to the case in which the

decision rules by the court µ0 and µ1 are endogenously determined. In equilibrium, the

patent office chooses to allow low quality innovators not only to to induce entry—as it

does in the exogenous court scenario—but also allows low quality innovations to induce

effort by the court. It is interesting to observe that, when judges are induced to exert

effort, the patent office screening rate and the judges effort are strategic complements

from the judges’ perspective. As we shall see in the next sections, this finding is quite

robust.
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5 Robustness and Extensions

5.1 Continuous Judge Effort

In this section we illustrate the Patent Office’s incentives to allow for obvious innova-

tions persists when the judges’ effort can take a continuous value. Taking the first order

condition of the judge’s problem (15) and then imposing symmetry among judges, we

obtain the aggregated effort as a function of the screening rate λ. Figure 4a shows that

the aggregate effort of the judges takes an inverted-U shape. This result highlights the

fact that the screening rate of the Patent Office can be either strategic complement or

substitute to the judges effort.

We now turn to the Patent Office problem which, in the context where judges’ decisions

are endogenized, becomes

W = ess(λ, s
∗)

(
pss(λ, s

∗)
π

1− β
− 1− κ(λ)− τ(λ)xss(λ, s

∗)c(s∗)

)
. (17)

where τ(λ) = α + (1 − α)λ represents the probability that an entrant receives a patent.

The problem above is analogous to (8) with the main difference that now the cost of

the patent system consists not only of the screening costs of the patent office κ(λ) but

also the cost of effort by the judges, c(s∗). Because judges review a patent conditional

on an infringement claim being made, out of the total number of entrants, ess, they

review and incur in the corresponding cost for those that get a patent, τ(λ), and land

in a monopolized niche xss. It is interesting to observe that the Patent Office faces a

new incentive when internalizes the costs of the patent system. Although lower screening

reduces the Patent Office’s costs κ(λ) it also increases the probability that an innovation

reaches court τ(λ)xss. This new effect puts an extra pressure for the Patent Office to

screen. Despite this new effect, Figure 4b shows that it is still optimal for the Patent

Office to choose an interior screening level.

Figure 5a and 5b and show how the optimal screening rate of the patent office λ and

the effort of judges varies with changes in the screening cost (parameterized by k) and the
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Figure 4: Optimal judge effort and welfare for different values of λ.

Notes: (a) The cost of screening is given by κ(λ) = exp(k(1− λ)/λ)− 1. (b) A judge’s cost of effort is
given by c(s) = (π/(1− β))c (exp(c · s/(1− s))− 1).

cost of effort (parameterized by ĉ). As expected, an increase in the screening cost reduces

the level of screening and an increase in the cost of effort, reduces the judges effort. An

increase in the cost of the judges’ effort encourages the Patent Office to screen more,

highlighting the fact that the Patent Office regards the effort of judges as a substitute

of its own. It is interesting to observe, however, that from the judge’s perspective the

patent office screening rate can be strategic complement or substitutes. Consistent with

Figure 4a, an increase in the cost of screening — which, recall, decreases the level of

screening — initially encourage judges to exert more effort (strategic substitutes) but,

when the cost of screening is sufficiently high, the decrease in screening by the patent

office discourages Judges to exert effort (strategic complement). As shown in Figure 5b

the strategic complementary region is the largest.

5.2 Cost-saving Innovations

In the previous sections we have studied innovation in a quality ladder. In that context,

novel innovators were able to extract all the surplus from consumers, avoiding dead-

weight losses and simplifying the welfare analysis. In this section we turn to cost-saving

23



0.1 0.2
0 0

0.2

Cost of screening (k)

J
u
d
g
e
s’

c
o
st

o
f

E
ff

o
rt

(ĉ
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Figure 5: Optimal screening and effort as a function of screening and effort cost.

Notes: (a) The cost of screening is given by κ(λ) = exp(k(1− λ)/λ)− 1. (b) A judge’s cost of effort is
given by c(s) = ĉ(π/(1− β)) (exp(ĉ · s/(1− s))− 1).

innovations, which provide a useful setup to study the welfare losses associated to market

power.

As before, we now assume that there is a continuum of niches of size 1. In each niche

the good produced is homogeneous. Firms compete in prices and face an isoelastic equal

to q = a/p. Each novel innovation decreases the existing marginal cost by a factor of

1− δ where δ ∈ (0, 1); that is, if mc represents the baseline marginal cost, after m novel

innovations the marginal cost becomes mcm = δmmc.

Lemma 8. The profit flow π and dead-weight loss ` generated by a novel innovation

are independent of the baseline marginal cost mc and the number of innovations m. In

particular, they are equal to π = a(1− δ) and ` = a (ln(δ−1)− (1− δ)) > 0.

Because profits are invariant to the number of innovations, the firm behavior described

in Section 2 goes through without alterations. The objective functions of the Patent Office

and courts, however, need to be modified. Figure 6 depicts the product market payoff

associated with each innovation. We will use this figure to construct these objective
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Figure 6: Cost-saving innovation: product market payoffs.

functions. The social welfare function of the Patent Office is given by

W = ess

(
(1− α)λxssµ0

`

1− β
+ α

(
xssµ1

π + `

1− β
+ (1− xss)

π

1− β

)
− 1−K

)
(18)

where K = k(λ) + τ(λ)xssc(s) is the total cost of the patent system. To explain the

welfare function consider Figure 6 when mc1 is the latest technology available in the

market. The first term in the main parenthesis captures the arrival of an obvious entrant,

which occurs with probability 1− α and who obtains a patent with probability λ. With

probability 1− xss the obvious entrant lands in a competitive niche, not affecting welfare

creation. With probability xss the obvious entrant lands in a monopolized niche. In that

case, the market price goes down from mc0 to mc1. The area A depicts the profits of the

replaced incumbent which are transferred to consumers as surplus. Because this surplus

is not created, we ignore it from the welfare equation. The area B was the existing dead-

weight loss, which with the arrival of the obvious innovation is transferred to consumers

permanently, increasing welfare by `/(1− β).

The second expression represents the payoffs when the entrant is novel, which occurs

with probability α. Novel innovators always get a patent. With probability xss the entrant

lands in a monopolized niche and gets challenged in court. The entrant wins in court with

probability µ1. In that case, the price goes down from mc0 to mc1. As before, the area

A is transferred from the incumbent to consumers and the original dead-weight loss B
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is now captured by consumers permanently. In contrast, the novel entrant captures the

area C + D as profits. When a new innovation arrives in the future, these profits will

be eventually transferred to consumers. That is, the welfare value created are the areas

B+C +D at perpetuity, or (π+ `)/(1− β). Finally, when the novel innovator lands in a

competitive niche—i.e.; the existing price equals the latest technology mc1—- it does not

get challenged in court and captures the area C + D as profits. As before, these profits

will eventually be transferred to consumers when a new innovation arrives. The entrant,

thus, creates a welfare value π/(1− β).

In order to better understand the Patent Office’s incentives we can re-arrange Eq. (18)

using the steady state properties of the game, to obtain the expression

W = ess

(
pss

π + `

1− β
− 1−K

)
.

From here we can see that the judge problem is analogous to that in (8) but now the welfare

expression also captures the dead-weight loss recouped with the arrival of an innovation.

It is immediate that the main message of Proposition 3 applies: When courts’ behavior

is fixed and when µ1 < 1 the patent the optimal screening rate might be interior even in

the absence of screening cost.

We can now analyze how the judge’s endogenous decision changes when innovations

are cost reducing and a dead-weight loss might arise. Recall that entrants are only sued

by an incumbent in a monopolized niche. Therefore, letting the entrant stay in the market

will always increase welfare by (at least) `/(1 − β) regardless of the entrant’s type. As

in the benchmark case, a Type-I error arises when a novel innovation is prevented from

production. Since this case only occurs in already monopolized niches, this error leads to

a loss of ECS
I = (π + `)/(1− β), where CS stands for the cost-saving setup.

The Type-II error represents the “loss” in social welfare when an obvious innovation is

allowed to replace a current monopolist. In this case, this cost has now two components.

First, there is a short run gain, derived from eliminating the dead-weight loss that the in-

cumbent generated. Second, there is the same dynamic effect explained in the benchmark
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case that increases the future value of the niche. That is,

ECS
II = − `

1− β
+ β(wM − wC),

where the value of a monopolistic and competitive niche are respectively defined as

wC = αess(ŝ)

(
π

1− β
+ βwM

)
+ (1− αess(ŝ))βwC ,

wM = αµ1(ŝ)ess(ŝ)

(
π + `

1− β
+ βwM

)
+ (1− α)λµ0(ŝ)ess(ŝ)

[
`

1− β
+ βwC

]
+ φβwM ,

(19)

and φ ≡ 1 − ess(ŝ)(αµ1(ŝ) + (1 − α)λµ0(ŝ)). The difference with the benchmark case

is that, here, the value of a monopolistic niche now depends on the dead-weight loss `.

Each time a monopolist is replaced by another firm the deadweight loss associated to

its innovation is obtained and transferred to consumers by means of a lower price. This

effect increases wM and narrows the difference between the value of a monopolistic and a

competitive niche.

As a result, the dead-weight loss generates two effects on ECS
II going in opposite direc-

tions. The static gain enhances the return from eliminating an existing monopolist. The

dynamic effect reduces the incremental value of a competitive niche compared to a mo-

nopolized one. After some algebra we can show that the static effect dominates. That is,

if we compare the expression for the Type-II error in the benchmark case, EII(ŝ, γ), and

the one that arises in the cost-saving innovation case we have that ECS
II (ŝ, γ) < EII(ŝ, γ).

Using the previous expressions we can now turn to the decision of a judge in the binary

effort scenario. As before, we can compute the costs associated to the effort decision based

on the effort carried out by all other judges, ŝ, which we denote as JCS(s, ŝ, γ). As in the

standard case, it is easy to see that when a judge chooses s = 1 no error is made, meaning

that the only cost that he/she bears is the one related to effort. That is, JCS(1, ŝ, γ) = c.

When a judge chooses effort s = 0, however, the expression for the cost becomes

JCS(0, ŝ, γ) = J(0, ŝ, γ) +
γ(1− γ)

2

`

1− β
∆(ŝ, γ), (20)

where ∆(ŝ, γ) is a function of the two relevant choice variables, the effort of other judges
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and the level of screening carried out by the Patent Office together with the rest of

parameters of the model.

The previous expression allows us to study whether the existence of a dead-weight

loss fosters or hinders the high-effort choice decision of a judge. In particular, suppose

that without dead-weight loss, ` = 0, the equilibrium implies a choice of effort of 1 by all

judges. This means that J(1, 1, γ) < J(0, 1, γ). Whether this equilibrium exists or not

when ` is positive depends on the sign of ∆(ŝ, γ). That is, if ∆(1, γ) < 0 there exists a

sufficiently large dead-weight loss for which JCS(1, 1, γ) ≥ JCS(0, 1, γ) and no effort will

be exerted in equilibrium. It turns out that ∆(1, γ) < 0 if

απ

1− β
<

2− γ
1− γ

. (21)

The next proposition summarizes this discussion.

Proposition 6. If (21) holds there exists a sufficiently high value of the dead-weight loss,

`, for which the high-effort equilibrium will fail to exist.

The intuition for this result is as follows. Suppose that a judge decides not to exert

any effort when all the judges make the right ruling and allow in the future only novel

innovators to replace existing incumbents. In that case, the main gain from not exerting

effort stems from allowing obvious innovations to compete with the incumbent and elim-

inate the dead-weight loss. The incidence of this effect is increasing in γ, which makes

the right-hand side of (21) more likely to hold. The cost of not exerting effort, however,

stems from increasing the probability that a genuine innovator fails to replace a current

monopolist, preventing society from reaping the gains from the innovation. When this

effect is small a judge will be more inclined towards lower effort.

These two effects can be illustrated in Figure 7. The upper left panel of the figure

shows how the cost of exerting s = 0 changes with different values of ` and γ when

∆(1, γ) < 0. As expected, this cost is hump shaped with respect to the value of γ, as

already illustrated in Figure 2. Effort will be exerted when the horizontal line, which
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(d) Fig. 7c: γ(1) and γ(1) as a function of `

Figure 7: Optimal judge effort and welfare for different values of λ.

Notes: Parameters in figures (a) and (b) are π = 2.4, β = .8, and a = .1; in figures (c) and (d) are
π = 1.2, β = .95, and a = .15

indicates the cost of exerting effort, c, is lower. In the other dimension, and consistent

with the previous proposition, higher values of ` lead to a lower cost. Consequently, as

it can be seen from the upper right panel, the region where the equilibrium exhibits a

positive effort level by all judges, indicated by the white area, shrinks as the dead-weight

loss increases.

The lower panels show that, often, the situation might involve positive and negative

values of ∆(1, γ) as γ changes. That is, (21) might hold only if γ is sufficiently high. The

lower right panel of the figure shows one such case where the region where an equilibrium

with positive effort exists, corresponds to ∆(1, γ) > 0 for low values of γ, whereas the
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opposite occurs when γ is large. Consistent with the effects highlighted in the previous

discussion, we can see that the higher bound shrinks as ` increases. The lower bound,

however, exhibits the opposite behavior and, due to ∆(1, γ) > 0, it expands as ` increases,

since this leads to a higher cost by the judge of not exerting effort.

6 Concluding Remarks

Innovation is considered key to industry dynamics. Entry, exit, and innovation are com-

plex interrelated phenomena in every industry, and especially so in the youngest and more

technology-intensive industries. Many of these industries rely on IP as the source of tem-

porary monopoly power that allows the successful innovators to obtain a return for their

previous R&D investments. IP protection, however, is a double cutting edge knife for the

dynamics of innovative industries, as the protection of incumbent innovators may be an

obstacle to the success of novel innovators.

This paper contributes to the growing literature that analyzes the role of IP protection

by embedding it in an industry dynamics setting in which innovation and imitation are

different, interrelated processes modeled along similar lines. We find that welfare and in-

novation are maximized with zero protection against further innovation and, conditional

on this, with full protection against imitation. However, if some protection against inno-

vation is unavoidable, allowing for some imitation may be socially beneficial. We show

how these results are the outcome of the combined decisions of a Patent Office that en-

gages in ex-ante screening of incoming innovators and courts that are asked ex-post to

analyze the merits of the cases brought to them when entrants are in conflict with market

incumbents.
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Appendix

Proof of Lemma 1. To show existence we start by imposing the steady condition xt = xss
for all t in eq. (2), obtaining eq. (5). Replacing xss into (3) we obtain eq. (6). Using the
complementary slackness condition (4), we obtain vss = p−1ss . Finally, using condition (4) again
and imposing steady state to (1), we find the expression for the entry flow (7). Because all these
equations are linear, we have a unique solution.

To determine when the entry flow is positive, observe that (7) is positive if and only if
π > (1 − β)/pss. From Proposition 1 we know that pss is increasing in λµ0. Thus a sufficient
condition for entry follows from taking λµ0 = 0 so that pss = αµ1, which delivers the result. �

Proof of Propositions 1 and 2. Most comparative statics are direct, as they follow from
direct differentiation. The derivative of the entry flow with respect to λµ0 is

∂ess
∂ (λµ0)

=
(1− α)

β (αµ1 + (1− α)λµ0)
2

[
(1− β)− p2ss

π

α

]
For the sign we just care about the parenthesis, which is a monotonic function of π. To show that
the derivative can be positive for any value of λµ0, take the maximum value of π for which there
is no entry. That is, take π = (1−β)/pss. In this case the parenthesis becomes (1−β)(1−pss/α).
But as pss < α whenever µ1 < 1 and the derivative is strictly positive. By continuity, the results
holds for π values under which there is entry.

To show that the derivative is negative when µ1 = 1, observe that in this case pss = α and
the parenthesis becomes (1−β)−απ, which is negative for any values of λµ0 given Assumption
1. Finally, an example of an inverted-U shape relation is given in the main text. �

Proof of Proposition 3. The proof that λ∗ = 0 whenever µ1 = 1 is given in the text. For
an interior solution we compute the derivative (9) and solve for the values of λ such that (9) is
equal to zero. Because the first order condition corresponds to a third degree, we obtain three
candidate solution. Call them {0,−,+}. The first solution,

λ0 =
−α (παµ1 − (1− β))

µ0 (1− α) (πα− (1− β))
< 0

corresponds to values for which (8) is equal to zero, thus never a maximum. Evaluated at λ0,
W (λ0) = 0 as both ess(λ0) = 0 and pss(λ0) = (1 − β)/π hold. Using these facts, it is readily
verifiable that the second order condition at λ = 0 is positive. Therefore, the critical point
corresponding to a (local) maximum must lie to the right of λ0

The second and third solutions are given by

λ−,+ = λ0 + α
(1− µ1)

(
πα±

√
απ (πα+ 8 (1− β))

)
2µ0 (1− α) (πα− (1− β))

Given Assumption 1, the denominator above is positive and the sign of the fraction depends
on solution. For the negative solution the numerator is negative, and positive for the positive
solution. Therefore, we have that λ− < λ0 < λ+. Thus, given the analysis above, λ+ is the
solution for a local maximum. �

Proof of Lemma 2. Using the value functions for wM and wC compute Γ = wM − wC

Γ = −essα
π

1− β
(1− µ1) + [1− ess (α+ (1− α)λµ0)]βΓ,
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Solving for the value of Γ delivers (14). �

Proof of Lemma 3. We start by showing that (16) is positive when γ ∈ (0, 1). Assumption
1 guarantees êss(ŝ) > 0 for γ ∈ [0, 1). Thus, for every γ ∈ [0, 1)

Φ =
(1− β) (1− γ) + αβ ((2− γ)µ1(ŝ) + γµ0(ŝ)− 1) êss(ŝ)

(1− β) (1− γ) + αβ (1− γ + γµ0(ŝ)) êss(ŝ)
> 0. (22)

which implies J(0, ŝ, 0) = 0 and J(0, ŝ, γ) > 0 for γ ∈ (0, 1). When γ = 1 we use L’Hospital’s
rule to show that (22) converges to a non-negative constant so that J(0, ŝ, 1) = 0. To complete
the proof we need to show that there exists γ such that J(0, ŝ, γ) > c. Take γ = 1/2,

J(0, ŝ, 1/2) =
π

1− β
(1− β) + αβess(ŝ)

8(1− β) + 14αβess(ŝ)

which is increasing in ess(ŝ). The result follows from taking ess(ŝ) = 0 and Assumption 2. �

Proof of Lemma 4 and 5. Both lemmas follow from differentiating (16) when µ0(ŝ) and
µ1(ŝ) are given by (12) and

ess(ŝ) =
(1− γ) (1− β) (π̃pss(ŝ)− 1)

αβk1
where pss(ŝ) = α

k1
k2
, π̃ =

π

1− β
,

k1 = (1− γ)µ1(ŝ) + γµ0(ŝ), and k2 = 1 − γ + γµ0(ŝ). By Proposition 1 ess is increasing in α.
Therefore, it is sufficient to analyze the effect of ess on Φ. Differentiating Φ, we obtain

∂Φ

∂ess
= −αβ (1− β) (1− γ)(2− γ) (1− µ1 (ŝ))

((1− β) (1− γ) + βαk2ess (ŝ))2
< 0

Which implies that (16) is decreasing in α.
For the second comparative static, differentiating (16) width respect to π̃ we obtain:

∂J (0, ŝ, γ)

∂π̂
=
γ (1− γ)

2

(
Φ (ŝ, γ) + π̂

∂Φ

∂ess

∂ess
∂π̂

)
where

∂ess
∂π̂

=
(1− γ) (1− β) pss (ŝ)

αβk1
.

The parenthesis above is positive for all γ < 1 and equal to

k21

(
k2 − (2− γ) (1− µ1 (ŝ))α

k2

)
+ k1 (k2 + k3) (π̂pss (ŝ)− 1) + k2k3 (π̂pss (ŝ)− 1)2 > 0

where k3 = ((2− γ)µ1 (ŝ) + γµ0 (ŝ)− 1) > 0.
Finally, differentiating with respect to ŝ we obtain

∂J (0, ŝ, γ)

∂ŝ
= K

(
γ (ŝ+ 1)2 − (ŝ− 1)2

)
where K is a positive constant. The parenthesis is increasing in ŝ and is negative when ŝ = 0
and positive ŝ = 1. The condition in the lemma follows from solving for the value of ŝ that
makes the parenthesis equal to zero. �

Proof of Lemma 6. Replacing the values ŝ ∈ {0, 1} we obtain (omitting γ from the argument
of J(s, ŝ, γ) for ease of notation):

J (0, 1) =
π

1− β
γ (1− γ)

2
and J (0, 0) = J (0, 1)

γ
(
2− γ2

)
(1− β) + 2 (1− γ) (2− γ)πα

(2− γ2) ((2− γ)πα− γ (1− γ) (1− β))

Using our positive entry assumption it is possible to show that the term accompanying J (0, 1)
in the expression for J (0, 0) is positive and less than one. Thus, J(0, 0, γ) < J(0, 1, γ) for every
γ. Because γ(ŝ) and γ(ŝ) are the solutions to J(0, ŝ, γ) = c, the result follows. �
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Proof of Lemma 7. See main text. �

Proof of Proposition 5. Foe ease in notation we do the proof in the γ space instead of λ.
The two relate according to equation (11). We start by showing that, ess(ŝ, γ) is decreasing in
γ (i.e., λ) when when ŝ = 0. Let π̃ = π/(1− β), in this scenario ess (0, γ) is given by:

ess (0, γ) =
2 (1− γ) (1− β) (π̃pss − 1)

αβ (2− γ)

where pss = α(2 − γ)/(2 − γ2) > 0 is decreasing in γ. It is straight forward to verify that
µ−11 > pss so that, by assumption 1, entry is positive. Differentiating with respect γ we obtain

∂ess (0, γ)

∂γ
= −

2 (1− β)
(
γ2 − 2

)2 (
π̃
(
γ2 + 2 (1− γ)

)
p2ss/α− 1

)
αβ (4− 2 (1 + γ) γ + γ3)2

which is negative by the positive entry assumption. We now show that, in the absence of
screening costs (i.e., κ(λ) = 0 for all λ) the welfare function is decreasing in λ. in this scenario
we have

Wκ=0 =
2 (1− γ) (1− β) (π̃pss − 1)2

αβ (2− γ)
thus

∂Wκ=0

∂γ
= −ess (0) (π̃pssφ1 − 1)

(2− γ) (1− γ)

where φ1 =
(
6− 12γ + 9γ2 − 2γ3

)
/
(
2− γ2

)
. As before, it can be verified that µ−11 > pssφ1, so

that this derivative is negative.
We can now prove the statement. Start by observing that ess(0, 0) = ess(1, λ) for all λ.

Similarly, pss(ŝ = 0, λ = 0) = α = pss(ŝ = 1, λ) ≥ pss(ŝ, λ) for any ŝ and λ. Therefore, when
judges perform full effort or when every obvious innovation is screen out of the market both
entry probability pss and entry ess are maximized. Let γ◦ be the corresponding λ◦ in the γ
space. For any γ < γ(0) choosing γ(0) weakly increases ess and pss and strictly decreases the
screening cost. Therefore, if γ◦ ≤ γ(0) then choosing γ(0) dominates any screening rate in which
ŝ = 0. If γ◦ > γ(0), although γ(0) offers larger entry and probability of success than γ◦ the
screening-cost savings of choosing γ◦ may overcome the benefits. Therefore, if we bound the
increase in cost, the full effort screening rate dominates. [Add condition from notes] �

Proof of Lemma 8. Let m > 1 be an arbitrary number of innovations in the quality ladder
and mcm = δmmc for any mc > 0. In a monopolized niche, due to the unit elasticity of demand,
the incumbent wants to charge the highest price feasible. In this case p = mcm−1. Then, the
incumbent profits are given by π = (p−mcm)q = a(1− δ) which is independent of the number
of innovations and the baseline cost mc. The dead-weight loss in the market is given by∫ mcm−1

mcm

q(p)dp− π = a
(
ln
(
δ−1
)
− (1− δ)

)
also independent of m and mc. �

Proof of Proposition 6. The function ∆(ŝ, γ) in (20) is given by

∆(ŝ, γ) =
βα ((2− γ)µ1(ŝ) + γµ0(ŝ)− 1) ess(ŝ)− (1− β)

βα ((1− γ) + γµ0(ŝ)) ess(ŝ) + (1− β) (1− γ)
.

To have an equilibrium where every judge perform effort a necessary condition is JCS(0, 1, γ) > c.
In this case we have

∆(1, γ) =
(1− γ)πα− (2− γ)(1− β)

(1− γ)πα

which is negative whenever condition (21) holds. Since limδ→0 ` =∞, JCS(0, 1, γ) can be made
arbitrarily small (or even negative) with a sufficiently large `, inducing judges not to exert
effort. �
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