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ABSTRACT

It is well known that price and quantity regulation are not equivalent under uncertainty. This asymmetry has
been a factor in the debate about whether to use taxes or Tradable Permit Schemes (TPS) for controlling
greenhouse gas emissions. We analyze the allocative efficiency of a TPS for a congestible facility such as an
airport, a road, a recreational area, or a museum that experiences supply and demand shocks. The number of
permits issued cannot depend on the state. We compare the efficiency of a TPS and a congestion fee when the
level of the fee is similarly constrained to be the same across states. When demand and cost curves are linear, a
fee outperforms a TPS for several combinations of additive and/or multiplicative demand and cost shocks. More
generally, the ranking depends on the nature and magnitude of demand and cost shocks, the elasticity of the cost
function, and whether or not the permit requirement always binds. A TPS tends to perform well when first-best
usage levels are similar across states. Analogously, a fee is relatively efficient if first-best fees are similar across

states.

1. Introduction

Many types of facilities are prone to congestion including roads,
airports, seaports, and recreational areas. The estimated costs of
congestion delays to consumers, firms, and the overall economy are
large.! The standard prescription in economics to internalize congestion
externalities is a congestion toll or fee. The idea was first proposed for
roads by Pigou (1920), and there is now an extensive literature on
road-congestion pricing (see Tsekeris and Vof (2008), de Palma and
Lindsey (2011), and Santos and Verhoef (2011) for reviews).

* Corresponding author.

Marginal-cost pricing of airport congestion was explored by Carlin and
Park (1970), and a large body of work on airport congestion fees has
developed (see Gillen et al., 2016). Crowding at recreational areas has
also been a recurring concern — both at remote areas where solitude is
valued highly (e.g., Cicchetti and Smith, 1973; Smith and Krutilla, 1974)
and at popular destinations where visitors get in each other’s way
(Manning, 1999).2

Advances in information technology have reduced the costs of
imposing congestion-based fees and informing users about fee sched-
ules. However, congestion fees are unpopular. There has been

E-mail addresses: andre.depalma@ens-cachan.fr (A. de Palma), robin.lindsey@sauder.ubc.ca (R. Lindsey).

1 According to Schrank et al. (2017), in 2014 congestion in major US urban areas imposed on drivers approximately 6.9 billion hours of travel delay and 3.1 billion
gallons of extra fuel consumption with an estimated total cost of $160 billion. Inrix (2016) reports that traffic congestion in the UK cost motorists more than £30
billion in 2016. According to Ball et al. (2010), in 2007 the costs of air traffic congestion in the United States exceeded $36 billion.

2 Traditionally, fees at public recreational facilities have been set at modest levels to achieve partial cost recovery while encouraging usage. Managing demand has
not been a priority. Nevertheless, in the US there has been slowly growing interest in using fees to redistribute usage over time and space as well as to generate larger
revenues. In 1996, the US government enacted a Recreation Fee Demonstration Program to determine the feasibility of using fees to achieve greater cost recovery for
operation and maintenance of recreation areas and sites (Espey, 2006). In 2004, the program was replaced by the Federal Lands Recreation Enhancement Act

(American Recreation Coalition, 2004).
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longstanding public and political opposition to road tolls (Jaensirisak
et al., 2005) and airport congestion fees (Levine, 2008).3 In general, fees
are also unpopular at recreational areas (Watson and Herath, 1999;
Anderson and Freimund, 2004).

In the case of road pricing it is often argued that toll revenues must be
dedicated to local transportation to overcome opposition to tolls
(Jaensirisak et al., 2005). Yet, if revenues are dedicated to expanding
roads or improving public transportation, years may pass after tolling
begins before drivers experience any benefits. This creates a
chicken-and-egg problem: investments are needed to make tolling
acceptable, but revenues from tolls are needed to fund the investments.
Moreover, the public may fear project delays and cost overruns, or even
that projects will be cancelled — perhaps due to a change of
government.4

Quantity-based tools are an alternative to fees for controlling
congestion, pollution and other externalities, and they are widely used.
Road travel is rationed by license plate restrictions (Gu et al., 2017),
perimeter control (Menelaou et al., 2017), traffic calming (De Borger
and Proost, 2013), and other measures (Victoria Transport Policy
Institute, 2014). Slot controls are used at airports (Gillen et al., 2016),
and quotas are imposed on access to recreational areas (Scrogin, 2005).
Quantity controls are generally less efficient than price instruments
because they fail to allocate usage to agents who value it the most.
However, efficiency can be improved if agents are granted usage rights
and allowed to trade them. Slot trading has occurred at US airports since
1986, and in 2008 the European Commission developed guidelines for
airport slot trading.”

There is now growing interest in the use of Tradable Permit Schemes
(TPS) to control road traffic congestion.6 With a TPS, motorists must
acquire a permit to make a trip, traverse a road link, or enter a restricted
area — depending on how the TPS is set up. By limiting the number of
permits issued, the amount of travel and the resulting congestion can be
controlled. Unlike with tolls, if permits are distributed free, drivers in
aggregate do not incur an additional net monetary cost to travel. Thus,
permits may be able to avoid two common objections to road pricing:
that it constitutes double taxation (i.e., taxpayers pay for road con-
struction, and again to use the roads), and that it entails paying for
something that was previously free. TPS are often viewed as more
equitable, too. It is often claimed that tolling is vertically inequitable
because lower-income individuals are willing to pay less for quicker and
more reliable trips. This concern is muted with a TPS if permits are given
out without charge. Moreover, lower-income individuals and house-
holds tend to travel less by car, and hence can earn income by selling
excess permits. TPS have the further advantage that motorists gain
immediately, rather than having to wait until any promised road or

3 Objections to road pricing include paying for something that was previously
free, double taxation, inequity, and system complexity. See Ecola and Light
(2009) and Noordegraaf et al. (2014). Commercial airlines and general aviation
have long opposed a shift from airport fees based on aircraft weight to landing
and takeoff fees based on congestion. In theory, operators with a small share of
flights at an airport would pay higher fees than large operators who have an
incentive to internalize the costs of delay they impose on their own flights. Price
discrimination of this sort is widely viewed as inequitable.

4 An alternative is to allocate toll revenues to users directly. Kockelman and
Kalmanje (2005) propose that revenues be redistributed monthly to all licensed
drivers within an urban region.

5 See Commission of the European Communities (2008) and Fukui (2010).
Auctions are another quantity-based instrument that harnesses the price
mechanism. Slot auctions have been implemented at congested airports in
Europe. Ball et al. (2006) survey their advantages and disadvantages.

® Verhoef et al. (1997) were the first to propose the use of TPS for roads. An
extensive literature has now developed; see Fan and Jiang (2013), Grant-Muller
and Xu (2014), and Dogterom et al. (2017) for reviews. Most studies are
theoretical, although laboratory and field experiments are beginning to be
conducted; see Brands et al. (2019).
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public transport improvements are completed. We further discuss the
potential acceptability and equity merits of TPS in the conclusions.

With a few exceptions noted in Section 2, uncertainty has not been
considered in weighing the relative merits of congestion fees and
quantity controls for congestion management. However, as Weitzman
(1974) and others have shown for activities such as pollution control
where consumers do not directly bear the costs of market failure, price
and quantity regulation are not equivalent if regulatory instruments
cannot be adapted to prevailing demand and cost conditions. This has
been a factor in the debate about whether a carbon tax or a
cap-and-trade scheme is better for controlling greenhouse gas emissions
when the rate of climate change and the costs of adaptation and
abatement are uncertain. Uncertainty is also relevant for transportation,
recreation, and other congestible facilities where demand fluctuates,
and capacity or other cost shocks occur. However, the analytics of
congestible facilities differ from other goods and services because
congestion provides negative feedback to users that limits the size of the
deadweight loss due to overusage.

This paper has two main goals. One is to explore the operation of a
TPS for congestible facilities when demand and supply conditions are
variable, and the quantity of permits issued must be the same regardless
of the state. The second is to compare the allocative efficiency of a TPS
and a congestion fee when the level of the fee is similarly constrained to
be independent of the state. In our model, agents are risk neutral and
learn the state before deciding whether to use a facility. Predictable (e.
g., seasonal) and unpredictable fluctuations in demand and supply are
thus analytically equivalent, and can be treated within a unified
framework. We assume that agents are identical other than for their
willingness to pay, and consequently we do not compare the welfare-
distributional effects of a TPS and a congestion fee. As noted above, a
TPS may have a significant advantage over a fee in terms of equity and
public acceptability. By ignoring equity, our comparison is arguably
biased against TPS. Nevertheless, we find that a TPS can outperform a
fee in efficiency under certain plausible conditions.

Our main results are as follows. Similar to Weitzman (1974), we find
that a TPS performs well when first-best usage levels are similar across
states. Analogously, a fee does well if first-best fees are similar across
states. Yet, when we apply Weitzman’s assumptions to our model, the
results differ sharply. Weitzman showed that with linear demand and
cost curves, and additive shocks, quantity control dominates price
control if the marginal social cost curve is steeper than the demand
curve, and vice versa. By contrast, we show that a fee outperforms a TPS
regardless of the slopes of the curves as long as the permit constraint
always binds (i.e., the number of permits issued is less than the unreg-
ulated level of usage so that permits trade at a positive price). A fee also
outperforms a TPS if, in addition to additive shocks, there are multi-
plicative demand shocks.”

These clear-cut results appear to militate against the use of a TPS as
an alternative to a congestion fee. Yet, on further exploration, we
identify several plausible circumstances in which a TPS can be superior.
First, under Weitzman’s (1974) assumptions a TPS can be more efficient
if the permit constraint does not bind in every state. This happens if
demand is sufficiently low, and/or usage costs sufficiently high, that the
unregulated equilibrium level of usage is less than the number of permits

7 Padmanabhan et al. (2010) study multiplicative demand shocks in a model
where a profit-maximizing firm decides whether to set a fixed price or a fixed
quantity. Shocks to the demand curve can take two forms: horizontal dilations
that correspond to variations in the number of consumers, and vertical dilations
that correspond to variations in willingness to pay. They show that the firm
prefers to set price if horizontal dilations dominate, and to set quantity if ver-
tical dilations dominate.



A. de Palma and R. Lindsey

B Deadweight loss with price control

Deadweight loss with quantity control

MSC,

~ Marginal benefit and cost ($)

wo

MSC,

hST)

N§ N> N N Nt

B Quantity

Fig. 1. Price and quantity controls in Weitzman’s model with variable costs.

allows.® Total usage with a TPS can therefore depend on the state, and
this gives a TPS some flexibility in regulating usage. A fixed fee lacks this
malleability because users pay the same amount regardless of demand
and supply conditions. Second, we show that a TPS can outperform a fee
if congestion grows with usage at an increasing rate. If so, it is important
to prevent usage from overloading capacity. A permit constraint does
this more reliably than a fee. Third, we extend consideration to exter-
nalities other than congestion such as pollution, noise, and infrastruc-
ture damage. When these additional externalities are present, regulating
the amount of usage becomes all-the-more important, and quantity
control using a TPS is again favoured over a fee.

The paper is organized as follows. Section 2 reviews the basic results
derived by Weitzman (1974) and others on prices versus quantities
under uncertainty when, unlike with congestion, consumers do not
directly bear the costs of market failure. Section 2 then summarizes what
little has been written about congestible facilities. Section 3 presents the
model, and describes how a tradable permit system operates. It explains
how a TPS can support the first-best optimum when demand and ca-
pacity are stationary, and it establishes the equivalence between a TPS
and a congestion fee. Section 4 introduces variability in demand and
costs, and derives the second-best fixed fee and fixed permit supply. The
case of linear demand and cost functions considered by Weitzman
(1974) is taken up in Section 5. Section 6 extends consideration to
nonlinear functions. A combined fee and TPS scheme is briefly examined
in Section 7. Extensions of the model are investigated in Section 8.
Section 9 summarizes the main results, and identifies avenues for future
research.

2. Prices vs. quantities under uncertainty

In this section we review some established results on prices vs.
quantities under uncertainty that will be useful for interpreting and
positioning our results. We begin with Weitzman’s (1974) classical
study.

Weitzman (1974) showed that price and quantity regulation are not
equivalent under uncertainty when policy instruments are rigid.” He
considered a good produced by price-taking firms in a planned economy.

8 An instance of a nonbinding permit constraint occurred during the pilot
phase of the European Union Emissions Trading System when the price of al-
lowances dropped to zero (Merrill Brown et al., 2012).

9 Rose-Ackerman (1973), Fishelson and Flatters (1975), Fishelson (1976),
Adar and Griffin (1976), and Roberts and Spence (1976) independently
developed some of Weitzman'’s ideas.
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Using the notation of our model, total output of the good is N, the
marginal benefit (i.e., inverse demand) curve is p(N), and the marginal
social cost curve is MSC(N). We use MSCto denote this curve to distin-
guish it from the private cost curve, C(N), used in our model.
MSCincludes the full marginal social cost of production which, in
Weitzman’s model, is borne by firms. In much of the environmental
literature, the good is assumed to be pollution abatement and the price
of the good corresponds to a tax.'’

The planner knows only the probability distribution of p(N)and
MSC(N)when it makes its decisions, but firms learn the state before
making their decisions. Under quantity control, the planner picks a
value of N, N, and firms are obliged to produce Nregardless of the cost.
Under price control, the planner chooses a price, p. Profit-maximizing
price-taking firms produce output N at which p = MSC(N). Firms
adjust their outputs in response to fluctuations in MSCso that, unlike
with quantity control, total output does depend on the state. However,
fluctuations in demand alone do not change output because they do not
affect either por MSC. Price control and quantity control then support
the same (second-best) output and price in all states. If demand varia-
tions are uncorrelated with cost variations, only cost uncertainty is
relevant to the choice between price and quantity control.

Weitzman takes linear approximations to the demand and
MSCcurves. He assumes that the slopes of the curves are constant and
known, but the planner knows the intercept of the MSCcurve only up to a
probability distribution. Given additive uncertainty of this sort, Weitz-
man shows'! that the difference in expected social surplus between price
control and quantity control is equal to

2p P P P
AW — c c — c (1 ) , 1
2msCy amse amsc \' T MsC W

where 62is the variance of the intercept of the MSCcurve and ’denotes a
derivative. Price control is superior to quantity control if
[Ip’|] < MSC’since the expression in brackets is then positive. Quantity
control is superior to price control if p’ > MSC’.'? Price control is
therefore superior if the demand curve is flatter than the MSCcurve, and
quantity control is superior if the demand curve is steeper.

Fig. 1 depicts an example with two states in which the demand curve
is fixed, while the MSCcurve is MSCgin state G (good) and MSCgin state
B (bad). In state G, the optimum is at point g. It can be realized either by
setting a quota of N or fixing the price at p%. In state B, the optimum is at
point c. It can be realized either with a quota of Njor a price set at p§. If
the quota cannot be differentiated between states, the optimal level, N,
is between Ngand Ng. Too little output is produced in state G with a
deadweight loss equal to area egf. Too much output is produced in state
B with a deadweight loss of area cde. If the price cannot be differentiated
between states, the optimal fixed price, p, is between p%and p3. Too
much output is produced in state G with a deadweight loss equal to area
ghj. Too little output is produced in state B with a deadweight loss equal
to area acb.

In the example, output varies too little (i.e., not at all) with quantity
control and too much with price control. In both states, the deadweight
loss is greater with price control. Consistent with eqn. (1), quantity
control is superior because the demand curve is steeper than the
MSCcurve. The intuition is straightforward. When the MSCcurve is
relatively flat, under price control small shifts in the cost curve induce
large fluctuations in output. With steep demand, the fluctuations lead
either to a serious shortage and a major loss of benefits, or a big surplus

10 1n this literature it is common to write benefits and costs as functions of the
level of abatement rather than output. To facilitate later comparison with our
model, we instead write them as functions of N.

11 Weitzman (1974, eqn. (20)).

12 Adar and Griffin (1976) derive a condition equivalent to (1) using elastic-
ities of the demand and cost curves.
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and a significant waste of resources. Under these conditions, a fixed
quota that guarantees a given output is preferable to a fixed price.'® By
contrast, if the demand curve is relatively flat the exact level of output is
not crucial to consumers. And if the MSCcurve is steep, forcing pro-
duction of a given amount can lead either to very high marginal social
costs that greatly exceed the benefit, or output at a very low marginal
social cost that falls far short of its marginal value to consumers. A fixed
price is then superior to a fixed quantity.

Although demand variations alone do not affect the choice between
price and quantity control, demand variations do matter if they are
correlated with variations in costs. Weitzman (1974) shows that with
correlation, eqn. (1) is modified to

62

AC=AY - 2 2
MSC”’ 2

where o7 is the covariance between demand and MSC. Positive corre-
lation favours quantity control, and negative correlation favours price
control. As Stavins (1997) explains, with price control firms respond to
high marginal costs by reducing output. If demand is positively corre-
lated with costs, consumption tends to be especially valuable when costs
are high so that the reduction in output induced by price control is
inappropriate. Quantity control is then more likely to be preferred. The
opposite is true with negative correlation.

Weitzman (1974) and most later authors assumed that under price
control firms choose the output at which p = MSC(N). Laffont (1977)
briefly considered another possibility in which consumers decide output
by adjusting N so that p = p(N). If so, demand variations affect output
whereas cost variations do not. This is just the opposite of Weitzman’s
(1974) case. Intriguingly, Laffont (1977) shows that with additive un-
certainty about benefits, the welfare ranking of price and quantity
control is given by — A%in eqn. (1). Quantity control is then superior if
the demand curve is flatter than the marginal cost curve, and price
control is superior if the demand curve is steeper.

The results summarized thus far apply when the demand and
MSCcurves are linear and shift vertically. Another possibility is that the
curves rotate about fixed intercepts on the vertical axis so that uncer-
tainty is multiplicative rather than additive. Ranking price and quantity
control is not as simple in this case. As Laffont (1977) shows, if multi-
plicative uncertainty is great enough quantity control can outperform
price control regardless of whether producers or consumers choose
output. Ranking price and quantity control is also not as easy if demand
and cost curves are nonlinear (Yohe, 1978).

In summary, the literature suggests that in the face of uncertainty
either price control or quantity control can be superior. The welfare
ranking depends on the relative slopes of the demand and cost curves
and on whether output under price control is decided by producers or
consumers. Correlation between demand and costs can also affect the
ranking.

For at least two reasons Weitzman’s (1974) analysis is not directly
applicable to congestible facilities and the choice between fees and a
TPS. First, in Weitzman’s model consumers do not incur the costs of
production. By contrast, the costs of congestion are (largely) borne by
users rather than the general population. Congestion provides a negative
feedback on usage that limits the costs that congestion can impose.
Second, a TPS imposes only an upper bound on usage because not all
permits that are issued have to be used. Some may go unused if demand
is particularly low, or if (private) costs are particularly high. If so, the

13 Following Weyl (2012), imagine that the MSCcurve shifts up or down along
the steep demand curve. The optimal equilibrium price varies widely whereas
the optimal quantity does not, so that quantity control is more efficient.
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TPS will have no effect on usage and the price of permits will drop to
zero.'*

As far as congestible facilities, four studies have analyzed price
regulation versus quantity regulation under uncertainty: two on air-
portion congestion and two on road congestion. Czerny (2008) studies
airport congestion using Weitzman’s linear framework and considers
separately cases with uncertain demand, uncertain costs, and uncertainy
in both demand and costs. His analysis is diagrammatic, and he does not
take into account the relationship between private congestion costs and
external congestion costs. Czerny (2010) formalizes the analysis in
Czerny (2008) algebraically and shows, as we do in Section 5, that with
linear functions and additive shocks fees outperform a TPS. Czerny does
not consider the possibility that the permit constraint does not bind.

Many studies have examined various aspects of TPS for the use of
roads, but only Shirmohammadi et al. (2013) and de Palma et al. (2018)
have considered demand and capacity uncertainty. Both papers consider
small road networks and use numerical methods to derive solutions.
Shirmohammadi et al. (2013) show that the equivalence between TPS
and congestion tolls breaks down with uncertainty. They consider the
degree of volatility in permit prices, but do not undertake a welfare
comparison of TPS and tolls. de Palma et al. (2018) consider a single
origin and destination connected by parallel highway routes and a
public transport service. Demand for each travel alternative is deter-
mined by a mixed-logit choice model. de Palma et al. (2018) solve
equilibrium for a large combination of parameter values. They find that
a TPS outperforms tolls in a majority of instances although the average
difference is not large. As they acknowledge, the complexity of their
model makes it difficult to develop intuitive explanations for the results.

Our paper differs from de Palma et al. (2018) in adopting a simpler
model with homogeneous agents and a single congestible facility that
could be a road, a Central Business District, an airport, a recreational
area, a museum, etc.. Agents decide whether to use the facility condi-
tional on the state and the fee or number of permits that are issued. Both
fees and permits are constrained to be the same across states. We build
on antecedent studies in allowing that the permit requirement may not
always bind, and showing how the relative performance of a fee and TPS
depends on the nature and magnitude of demand and cost shocks, and
the shapes of the demand and cost functions.

Before presenting the model it is worth commenting on three of the
assumptions. One is that prospective users know supply and demand
conditions when they decide whether to use a facility. Though stringent,
this assumption is becoming more plausible as information and com-
munications technology pervades everyday life. For example, drivers
can obtain traffic information from traffic websites (e.g., waze.com),
GPS devices, connected vehicles, mobile phones, e-mail, social media,
and so on. Transit users can get real-time alerts from transit websites as
well as mobile apps such as CityMapper, Transit, and Google Maps.

The second assumption is that permit quantities or fees cannot be set
according to current information. This might seem inconsistent with the
first assumption since facility operators typically have better informa-
tion than the general public, and may even be a source of public infor-
mation. The pertinent assumption, however, is that operators cannot use
this information to adjust permit quantities or fees on short notice. With
the exception of dynamic pricing on some High Occupancy Toll lanes in

14 A third distinction between congestible facilities and Weitzman’s setting is

that most travel — as well as many recreational activities, museum visits, and
so on — takes place on networks of multiple congestible links or nodes. To
support an efficient distribution of usage over a network using a TPS, upper
bounds must be imposed on the flows on each link. This multi-dimensional
complication does not arise for a global externality such as greenhouse gas
emissions.
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the US, real-time pricing has not been used on roads.'® One reason may
be that the infrastructure and operating costs are still too high for it to be
cost-effective (Levinson and Odlyzko, 2008). Another is that people
prefer simple and predictable pricing schemes (Bonsall et al., 2007).
Similar considerations may apply to permits which, so far, have not been
implemented for roads, and rarely for other facilities. Transactions costs
militate against frequently adjusting the supply of permits, and it seems
likely that they would be distributed weekly, monthly, or quarterly
rather than daily.

The third assumption is that users are atomistic and disregard any
effect they may have on congestion, permit prices, or toll levels. This
seems realistic for roads, recreational areas, and museums that
numerous people visit per day. In conjunction with the assumption of
quasilinear preferences, this allows us to ignore how permits are initially
distributed and rule out market power in tradable permits markets.'®

3. TPS and usage fees: stationary conditions

We begin the analysis by considering a benchmark case in which
demand and costs do not vary and are known. Supply conditions are
defined by the cost of usage. Consistent with previous studies, we show
that a fixed TPS and a fixed usage fee can both support a first-best
optimum.

In the model there is a single congestible facility or area, and a
continuum of agents who differ only in their willingness to pay to use or
access it. The number of agents who decide to use the facility is N.'” The
inverse demand curve is a decreasing and differentiable function, p(N).
The cost of usage is C(N). Unless noted otherwise, C(N)is assumed to be
strictly increasing and twice continuously differentiable. Thus, the
marginal social cost of usage, MSC(N) = C(N) + C’(N)N, exceeds C(N).
To assure that equilibrium usage is both positive and finite, we adopt:

Assumption 1. The demand and cost functions are such that p(0) >
C(0)and p(N) < C(N)for some N € (0, o).

Welfare is measured by total net benefits from usage which equal
gross benefits minus total user costs:

W(N) = /0 " p(wdn— CVN. ©)

3.1. Unregulated equilibrium and first-best optimum

If no fee or TPS is implemented, equilibrium usage, N", solves:

p(N") = C(N"), @

15 Elsewhere, toll schedules are adjusted periodically. For example, on SR-91
in Orange County, California, tolls are adjusted every six months to maintain
free-flowing conditions on the Express Lanes (https://www.octa.net/91-
Express-Lanes/Toll-Policies/, accessed June 1, 2019). In Singapore, toll
schedules are adjusted quarterly, and during June and December school holi-
days, to maintain target speeds on expressways and arterials (https://www.lta.
gov.sg/content/ltaweb/en/roads-and-motoring/managing-traffic-and-conges
tion/electronic-road-pricing-erp.html, accessed June 1, 2019).

16 Nonatomistic users do exist. Transportation examples include commercial
airlines and rail companies, major freight shippers, and even major employers
such as government departments. Similarly, large tour companies may generate
a substantial fraction of traffic at tourist sites and major recreational areas. He
et al. (2013) derive equilibrium conditions for a TPS on a network with non-
atomistic users.

7" A notational glossary is provided in the appendix. We do not model agents’
decisions after they have decided to use the facility such as time of use, duration
of stay, route, speed of movement, etc.. Yoshimura et al. (2014, 2017) analyze
empirically these dimensions of behavior for museum visitors. We also assume
that users behave in the same way whether access is unregulated, rationed by
price, or rationed by quantity. More et al. (1996) find empirical support for this
assumption in the case of campground usage.
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where superscript n denotes the no-intervention or unregulated regime.
Given Assumption 1, eqn. (4) has a unique and strictly positive solution
for N™.

The first-best optimum (FBO), denoted by superscript o, maximizes
net benefits in (3). The first-order condition determining optimal usage,
N°, solves:

p(N°) = C(N°) + C*(N°)N° = MSC(N°). (5)

The second-order condition is satisfied if C" (N°)N°/C’(N°) > — 2(i.e., if
the usage cost function is not too concave). Given Assumption 1, it fol-
lows that 0 < N° < N* < N.

We now consider price and quantity control instruments, beginning
with a usage fee since it is more familiar in the literature on congestion
management.

3.2. Optimal usage fee

Let N/denote equilibrium usage when a fee f is levied. The equilib-
rium condition determining Nfis

p(N)=C(N) +. 6)

Comparing eqns. (5) and (6), it is clear that the FBO can be realized
by following the standard Pigouvian prescription and charging a fee
equal to the marginal external cost (MEC) of usage in the FBO:

f°=C(N°)N° = MEC(N°). )

The fee in eqn. (7) is unique as long as C(N)is not too concave. If it is
highly concave, the inverse demand curve p(N)can intersect the
MSCcurve more than once. It is then possible (albeit seemingly unlikely)
that welfare is maximized at two or more distinct levels of usage sup-
ported by different fees. If so, the optimal fee is not unique.

3.3. Optimal tradable permit scheme

A TPS is defined by the total number of permits or credits allocated to
potential users, Y, and the number of permits required per use, y. With
only one congestible facility, and no distinction between peak and off-
peak periods, y can be normalized to 1 so that the maximum
permitted usage is Y. On any given day, once permits have been
distributed a market opens and agents can buy or sell permits.'® An
equilibrium is assumed to be reached in which the market clears at a
price q. Agents are price takers and treat g as given. The full cost of usage
is C(N) + g. Let N°denote usage with the TPS. The equilibrium condition
for N¢is

p(N)=C(N) +4. 8

If unregulated equilibrium usage exceeds the maximum permitted (i.e.,
N" >Y), then g > 0. If N* <Y, then g = 0. To support the FBO, Y must
be chosen so that N° = N°. Since N° < N", the permit constraint must
bind (N° = Y), and permits must trade at a positive price (q > 0).
Comparing eqns. (8) and (5) it is clear that ¢ = C’(N°)N°. Equilibrium
with the TPS is thus defined by two conditions:

Y=N°, (C)]

q=C'(N’)N°. 10)

As explained above regarding the fee in eqn. (7), if C(N)is highly
concave the optimal level of usage may not be unique. If so, the optimal
Y and q will not be unique either.

18 Agents will trade unless the number of permits they are initially allocated
happens to be commensurate with their individual demands. Individual allo-
cations and willingness to pay can both vary from person to person.
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3.4. Equivalence of a TPS and usage fee

It follows from eqns. (7) and (10) that ¢ = f°: the equilibrium price of
a permit matches the Pigouvian fee. It also follows that qY = f°N°: the
total market value of permits matches total usage fee revenues. These
results are summarized as:

Proposition 1. If demand and cost curves are stationary, the FBO can be
decentralized using either a fee or a TPS. The equilibrium cost of a permit
matches the fee, and the total market value of permits equals total fee
revenues.

Proposition 1 establishes that a TPS and a fee can both support the
FBO for a single facility. Yang and Wang (2011) show that the result also
holds on a general network with multiple origins, destinations, and
links.

4. TPS and usage fees: variable conditions

We now turn to the setting of interest in which demand, usage costs,
or both, vary over time. Variations are commonplace in the case of road
travel. Road capacity is reduced by crashes, slippery conditions, poor
visibility, and roadwork. Congestion-free travel time is increased by
these factors, as well as by forced traffic diversions to bypass routes that
are slower, or less direct, than the preferred route. Costs can vary pre-
dictably over time with seasonal variations in fuel prices and vehicle fuel
consumption (e.g., higher in very cold weather). Demand fluctuations
are also common. Predictable demand fluctuations occur daily, weekly,
monthly, and seasonally. Unpredictable fluctuations occur due to
inclement weather, special events, transit strikes, and other shocks.
Airport congestion is similarly affected by bad weather and demand
fluctuations. Demand and capacity variations also occur at outdoor
recreational facilities due to weather. Good weather can draw hordes of
users. Bad weather can keep people away, while also impairing or pre-
venting usage of such facilities as golf courses, ski slopes, hiking trails,
lakeside resorts, beaches and so on.

As in Weitzman’s (1974) model, the planner or regulator cannot
condition the usage fee or permit allocation on the state. But agents are
assumed to learn the state before deciding whether to use the facility.
Agents are assumed to be risk neutral so that it does not matter whether
variations are predictable or unpredictable. Only the relative fre-
quencies of states matter. Consequently, we will refer to conditions as
“variable” rather than “uncertain”.

Let Qdenote the set of possible states,'? and w € Qa particular state.
Let p,(-)denote the inverse demand function in state o, C,(-)the cost
function in state w, and N,usage in state w. Finally, let E denote the
expectations operator over states. Expected welfare, EW, is given by an
extension of (3):

No
EW:E{ / pw(n)dn—Cm(Nw)Nw}. an
JO

In any state w, unregulated equilibrium usage, N7, and FBO usage, N,
can be solved as in Section 3. If the fee and TPS were completely flexible,
the FBO could be supported either with a fee f;, = C’(N,)N? or a permit
allocation Y,, = N{. However, by assumption neither the fee nor the
permit allocation can be conditioned on the state. Thus, a single value of
the fee, f, must be chosen for the pricing instrument. Similarly, a single
permit allocation, Y, must be chosen for the quantity instrument. As in
Section 3, we first consider the fee and then the TPS.

4.1. Usage control with a fee

With a fee, equilibrium usage in state o, N

w?

is determined by the

19 Set Qcan be continuous or discrete.
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condition
Po(N;) =Co(N,) +f. 12)

The regulator chooses f to maximize expected welfare. Since the term in
braces in (11) is continuously differentiable, the derivative and expec-
tations operators can be permuted. The first-order condition for the
optimal fee, f*, is

E{(pw (ML) = Cu(N) = C” (NN %} —o0.

i

Using (12), this condition can be written E{ (f* — Co (NN %H =
I3

0, or

f
e{c, (m s

E=E{C, (NN,

=

, v,
Cov <Cm (NE))N{:N of ) ' .
N - as)

A
o)

where Covdenotes covariance. According to the first formula in (13), the
optimal fee is a weighted average over states of the marginal external

I

cost (mec) of congestion in each state, C,,,’(N?;)I\fju, with weights pro-
portional to the probability of each state and the fee sensitivity of de-
mand in each state, ()I\P; /of .2 The second formula in (13) shows that the
optimal fee exceeds the average mec if the mec is positively correlated
with demand sensitivity. Conversely, the fee is less than the mec if the
correlation is negative. Unless N/ = N°, C,’ (N, )N/ is not equal to the
FBO fee in state w, C,’(N.)N;. For this reason, we will call
C.’ (N, )N the first-best-formula fee.

Define f° =Min,f;as the smallest FBO fee of all states, and
= Max,f,,as the largest FBO fee. If f° <f’, the first-best fee varies
across states. It follows (see the Appendix) that f* € (f° ,)_‘0).

Applying the implicit function theorem to (12) one gets oN/, /df =
(Po’ (V) — G, (N, ))71 < 0. The weight in state w is larger the flatter are

[}
the usage cost and inverse demand functions because usage is then more
sensitive to costs. Substituting this equation into (13), and combining

the formula with the bounds on the optimal fee, leads to:

Proposition 2. Assume demand and cost functions are variable and
satisfy Assumption 1. The optimal fixed fee, f*, solves

E{C (VNG (Co (V) = (V) '}
. r 14
£{(C/ (V) —pa (V) '}

e

If the FBO fee varies across states, the optimal fixed fee lies strictly
within the range of the FBO fee.

As noted in Section 3, if the cost curve is highly concave the optimal
fee may not be unique when demand and cost conditions are stationary.
The same is clearly true when conditions are variable. Furthermore, with
variable conditions the optimal fee can be nonunique even if the cost
function is convex. To see this, write the first-order condition for the fee

20 Equation (13) is analogous to equation (7) in de Palma and Lindsey (1998),
who compare state-independent congestion pricing with state-dependent or
responsive pricing.
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Fig. 2. Allocative inefficiency of permits.

as:

oL )

po’(N,) = Cu’ (N,

®

=0 (15)

i

®

Suppose eqn. (15) is satisfied with a fee f]. Raising the fee above
fiincreases the numerator in each state. Since the denominators are all
negative, this tends to make the LHS increasingly negative. However,
the denominators also change. If the inverse demand curve or cost curve
in a state becomes flatter, the denominator shrinks in magnitude and the
weight on that state increases. If this trend is concentrated in states
where f* > C,’ (N, )N/, the LHS can change from negative to positive,
and another local optimum can be reached. An example is given in the
Appendix.?!

4.2. Usage control with a TPS

Let N¢ denote equilibrium usage in state @ with the TPS. As in the
stationary setting of Section 3, Y permits are allocated to prospective
users. This puts an upper bound of Y on usage in each state:

NE<Y, weQ. (16)

The TPS operates in the same way as in the stationary setting. In each
state, permits are traded freely and the price adjusts so that constraint
(16) is satisfied. Let g,denote the equilibrium permit price in state w.
The full cost of usage is C,(N;,) + g,, and the equilibrium condition
determining N is

Po (Nz,) =C, (N;z)) + Go- (17)

In good states (i.e., in which p,(-)is relatively high, and/or C,(-)is
relatively low), the permit constraint (16) binds, g, > 0,and N, = Y. If
any states are sufficiently bad, constraint (16) does not bind, g, = 0,
and N, < Y.%2 The permit market acts to adjust the monetary price of
usage according to demand and cost conditions. This contrasts with the
price control scheme in which the monetary price (the fee) is fixed.
Let Qcdenote the set of states in which the permit constraint binds,

and Qy = Q — Q¢the complementary set (possibly empty) in which the

21 The example features linear functions, and is easier to follow after reading
Section 5.
22 If N* =Y, then N, = Yand g, = 0.
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constraint does not bind.?® It follows that

18)

ON;, [ 1 for w€ Q¢
oY

10 for w€Qy”

The regulator chooses Y to maximize expected welfare given in (11). The
first-order condition for the optimal Y, Y*, is

. . s (v yve ) Vo
B{ra(42) - o) € e G| <o

y*

Using (17) and (18), this condition reduces to

=0. (19)

y*

E(UEQC {Qw }

v = Eocac{C? (N, )N, }

Similar to the fee, the optimal permit allocation can be bounded
above and below. Define N° =Min,, N as the lowest FBO usage level of all
states, and N’ = Max,, N as the highest level. It follows that Y* € [N° N |:
the optimal permit allocation lies within the range of the FBO usage
levels. To see why, note that if Y < N°, welfare in every state could be
increased by marginally increasing Y. Similarly, if ¥ > N°, welfare in
states @ with N, > N’could be increased by reducing Y to N’without
reducing welfare in other states.

Combining these bounds on the optimal permit allocation with eqn.
(19) leads to:

Proposition 3. Assume demand and cost functions are variable and
satisfy Assumption 1. The optimal permit allocation, Y*, satisfies

E(uch{‘Jw} ye = wéﬂc{cw’(N;)N(ﬂ;}

(20)

Y*lies within the range of FBO usage levels of all states. ~ Unlike Propo-
sition 2 for the fee, usage with the TPS does not necessarily lie strictly
within the range of first-best usage levels. According to (20), Y*is chosen
so that the expected equilibrium permit price equals the expected
marginal external congestion cost. Expectations are only taken over
constrained states. Usage conditions in unconstrained states do not
affect Y*because the price of permits is zero in these states and the
choice of Y*does not affect usage. By contrast, the optimal fee (14) does
depend on usage conditions in all states. If the permit constraint does not
bind in some states, total usage is not completely rigid with a TPS. As
will be shown, this flexibility can tip the balance in favour of a TPS.

Two complications arise in applying formula (20). First, the partition
of states into Qcand Qyis not exogenous but depends on Y. Second, if
states are discrete, the first-order conditions are discontinuous functions
of Y, and (20) defines only local optima. Similar to the case with the fee,
the optimum Y may not be unique. The two complications are illustrated
in Fig. 2 using an example with a stationary demand curve and two cost
curves corresponding to good (G) and bad (B) usage conditions. The
unregulated equilibrium occurs at the point where the demand and cost
curves intersect. In state G it is at point g, and in state B at point f. The
FBO is found where the demand curve and MSCcurve intersect. In state G
it is at point e, and in state B at point a.

According to Proposition 3, Y* € [N}, Ng]. Setting Y = Ngsupports
optimal usage in state G. As Fig. 2 is drawn, N3 < Ng, < Nj. Setting Y =
Ngthus curtails usage in state B too, but not enough to reach Nj.
Reducing Y slightly below Ngreduces overusage in state B further with
only a second-order efficiency loss in state G. However, as Y approaches
Ngthe marginal benefit from reducing overusage in state B declines to-
ward zero while the marginal deadweight loss from restricting usage in
state G mounts. Hence, given the cost curves in Fig. 2, Y* € (N},NZ), as
shown. Relative to the FBO, the deadweight loss in state G from

2 Since function C(-)is strictly increasing, usage is congested in all states
including Qy.
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underusage is measured by the shaded area cedbelow the inverse de-
mand curve, p, and above the marginal social cost curve, MSCg. Simi-
larly, the deadweight loss in state B from overusage corresponds to the
area abc.

Suppose that the cost curves in the two states differ more sharply
than shown in Fig. 2 so that Nj < Ng. Reducing Y slightly below Ngis
now counterproductive because it reduces usage in state G below the
FBO level without affecting usage in state B. Only when Y drops below
Nidoes the permit constraint bind in both states. If the gap between
Ngand Ngis small, and state B is likely enough, restricting usage in state
B is optimal, and Y* € (N}, NZ), again. If the gap is large, it is not
worthwhile to set a tight permit constraint that binds in state B, and
Y* =Ng. If the gap is just the right size, the two options are equally good
and the solution is not unique. The optimal permit allocation thus de-
pends, inter alia, on the degree of variation in costs and the probabilities
of the states.

5. TPS vs. fees: linear functions

We are now ready to tackle the main question addressed in the paper:
are prices or quantities more efficient at controlling usage of a con-
gestible facility when conditions vary, and controls cannot depend on
the state? To facilitate comparison with the classical results reviewed in
Section 2, we assume in this section that the inverse demand and cost
curves in each state are linear functions of N:

pw(N) =day — wa7 21
Co(N) = co +duN,

where parameters a,, b, c,, and d,are all strictly positive. Parameter
d,governs the rate at which the facility becomes congested, and will be
called the congestion coefficient. Equilibrium prices, quantities, and
welfare depend only on the difference between the intercepts of the
inverse demand and cost curves, A, = a, — ¢,. Unless indicated other-
wise, we assume A, > 0. If state w is realized, and usage is N, welfare
(see eqn. (3)) is

bru + 2dmN2 .

W, =A,N —
2

(22)
From eqns. (4) and (5), the unregulated equilibrium and FBO usage
levels in state w are

All) All)

Nt =—"% = N =__"°% 23
@ b(l) + d(l) ’ @ b(l) + 2d[l) ( )
From eqn. (3), the corresponding welfare levels are
b,A2 A?
WZ) — i) s W(u)) — [ : (24)
2(by +d,y)’ 2(by + 2d.,)
The FBO fee is
du)Aw
‘0 o 2
fo=y (25)

and the welfare difference between the unregulated equilibrium and the
FBO is
2 42
wo — W, = Ay 5 (26)
2(by, + 2d,) (b, + dy)

The welfare difference is an increasing function of the congestion co-
efficient d,,. It is a quadratic function of A,, and hence of the level of
usage in either the unregulated equilibrium or the FBO as per (23). The
welfare gain from implementing the FBO fee, the fixed fee, or the TPS all
depend on the probability distributions of parameters a,,, by, ¢», and d,,.
We consider two cases. The first is Weitzman’s case of additive shocks in
which the intercept parameters a,and c,vary, but the slope parameters

Economics of Transportation 21 (2020) 100149

b,and d,are constants. In the second case, b, and d,are variable. We call
this case multiplicative shocks because the size of the shock is propor-
tional to usage.

5.1. Additive shocks

With additive shocks, a,and c,are variable, and hence so is A,.
Define A = E{A,}, and let 63denote the variance of A. The optimal fixed
fee works out to

dA
. 5
f b+2d @7
and expected welfare with f*is
—2
. A b

EW = + o;. (28)

2(b+2d)  2(b+d)

To analyze the TPS, it is necessary to distinguish between cases in which
the permit constraint always binds and cases in which it does not always
bind.

5.1.1. Case 1: Permit constraint always binds
Suppose the permit constraint binds in all states so that set Qyis
empty.24 Given (17) and (19), the optimal permit allocation is

A
Vi=—— 2
b+2d 29
and expected welfare is
—2
v A
ST ) 0

Given eqns. (28) and (30), the relative advantage of the fee over the TPS
is

A=EW —EW" :%aﬁ > 0. (31)
2(b+d)

Expected welfare with the fee always exceeds expected welfare with the

TPS. This result is formalized as:

Theorem 1. Assume that demand and cost curves are linear, and shocks
are additive. If the permit constraint always binds, a fee outperforms a TPS.

The ranking in Theorem 1 holds whether or not the demand and cost
curves are correlated because expected welfare in eqns. (28) and (30)
depends only on the distribution of the difference in their intercepts,
A, = a, — ¢,. Note from egns. (27) and (29) that f* = dY*: the optimal
fixed fee equals the marginal external cost of congestion evaluated at the
optimal permit allocation quantity. In this respect, the two instruments
target the same amount of usage although, due to fluctuations in A,,
they support different outcomes.

Theorem 1 differs from the results of Weitzman (1974) and Laffont
(1977). Weitzman showed that if firms choose output under price con-
trol, price control differs from quantity control only if costs are variable.
Price control dominates quantity control if the demand curve is flatter
than the MSCcurve. Laffont showed that if consumers choose output
under price control, only demand variations matter. Price control
dominates quantity control if the demand curve is steeper than the
MSCcurve. By contrast, Theorem 1 establishes that price control (a fee)
dominates quantity control (a TPS) with either cost or demand vari-
ability, and regardless of the relative slopes of the demand and cost (or
MSC) curves.

2% In the Appendix we show that usage with the optimal fee is then always
positive so that egns. (13) and (14) apply.
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Fig. 3. Additive shocks: inverse demand representation.
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Fig. 4. Additive shocks: net demand representation.

Theorem 1 differs from Weitzman (1974) and Laffont (1977) for two
reasons. First, users of a congestible facility are both consumers and
producers since they incur the costs of usage, not firms. Laffont’s (1977)
distinction between producers and consumers is thus absent. Second and
relatedly, congestion has a negative feedback effect on usage. When
costs rise, users curtail their usage somewhat without intervention.
Indeed, users in aggregate bear the full costs of congestion, and a market
failure exists only because individual users ignore the portion of the
costs they generate that are external and imposed on others. The fee is
designed to target the externality directly, and if the externality is
similar across states a fixed fee can perform nearly as well as the FBO fee.
A fixed quota lacks this sensitivity.?®

Fig. 3 illustrates Theorem 1 by presenting an example in which the
demand and MSCcurves have the same slopes as in Fig. 1.%° In state G,
optimal usage is NZand the first-best fee is fg. In state B, the corre-
sponding values are Njand f3. The fee is slightly smaller in state B than
state G because usage is lower in state B and (with parallel cost curves)
the marginal external cost is lower too. As per eqn. (14), the optimal

25 As Yohe (1978) notes, quantity constraints also lack this sensitivity in
Weitzman’s setting.
26 To make Fig. 3 easier to read, curves Cg(N)and Cy(N)are positioned further
apart than in Fig. 1.
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fixed fee, f*, is a weighted average of the first-best-formula fees f{;and fg.
Since f* € (f3.f¢), the fixed fee supports excessive usage in state G and
insufficient usage in state B. The respective deadweight losses in the two
states are given by areas hjkand acb. The permit allocation Y*is set at a
level intermediate between Njand Ng. The welfare loss is area ehgin
state G, and area cdein state B. The qualitative pattern of losses in Fig. 3
is the same as in Fig. 1, but in both states the losses are much smaller
with the fee than the TPS. Thus, in contrast to Fig. 1, the fee is superior.
Indeed, since the marginal external cost of congestion is similar in the
two states, so are the Pigouvian fees. The fixed fee is then near-optimal
for both states.

Czerny (2010) derives a variant of Theorem 1 in the context of
airport congestion for the case where demand is uncertain.”” He shows
how the result can be derived diagrammatically from Weitzman’s
approach by interpreting the demand curve and cost curve in an
appropriate way. He first notes that the net private benefit from usage is
measured by the inverse demand minus the user cost: p(N) — C(N). The
marginal external cost of usage is the marginal social cost minus user
cost: MEC(N) = MSC(N) — C(N). Given (21) and additive shocks, the net
benefit and MECcurves are A, — (b 4+ d)Nand dN, respectively. The net
benefit curve has an absolute slope of b+ d, and the MECcurve has an
absolute slope of d. Since the net benefit curve is steeper, price control
dominates quantity control. Theorem 1 generalizes Czerny’s result by
showing that, if the TPS always binds, price control remains unambig-
uously superior to quantity control when the intercept parameter c of the
cost function is variable, and regardless of how it is correlated with the
demand parameter a.

The example in Fig. 3 can be depicted using the net benefit and
MECcurves as shown in Fig. 4. With no regulation, equilibrium usage
occurs where the net benefits are zero. Optimal usage is determined
where the net benefit curves intersect the MECcurve. The deadweight
loss from the fixed fee is small because the MECcurve does not vary
much over the range of optimal usage.

5.1.2. Case 2: Permit constraint does not always bind
If the permit constraint does not bind in some states, set Qyis not
empty. Given eqns. (22) and (24), expected welfare is

btad, b .
Y+ E A}, (32)
2 2o+ apeees o)

EWC = Emeﬂc {Aw}Y - E{Qc}
where E{Qc}is the probability that the permit binds. The optimal Y is
derived by maximizing eqn. (32). In contrast to the case in which the
permit constraint always binds, the TPS can outperform a fee:

Theorem 2. Assume that demand and cost curves are linear, and shocks
are additive. If the permit constraint does not always bind, a TPS can
outperform a fee.

We prove Theorem 2 using an example. Suppose A has a two-point
distribution: A = Agwith probability ¢, and A = Agwith probability
1 — gowhere Ag > Ag > 0. The TPS outperforms the fee when?®

Ag T-p-—(1-¢)
A _ (-9 (33)
Ag %

Condition (33) is satisfied when the states differ sufficiently. Since
the maximum value of the right-hand side is 0.5 (reached in the limit as

27 See his Proposition 1. Czerny does not include an intercept parameter in the
cost function so that ¢, = Oin eqn. (21). Thus, he does not explicitly consider
additive cost shocks although, as shown here, his results continue to hold if cost
shocks can occur.

28 See the Appendix for details. In order for usage in state B to be positive with
the fee, parameter values must also satisfy Ag/Ag > gd/(b + (1 + g)d). This
condition is always satisfied when b is large enough. If this condition does not
hold, both the fee and the TPS should be optimized for state G.
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%—0), the TPS can outperform the fee only when A/ Ag < 0.5. When
(33) is satisfied, it is better with the TPS to ignore state B and support the
FBO in state G. As explained in discussing Fig. 2, the welfare gain from
improving usage in state G dominates the loss from doing nothing in
state B. The fee is less efficient than the TPS because it does not
discriminate between the two states despite their large differences.
Condition (33) is notable in that it does not depend on parameters b and
d, and therefore does not depend on the relative slopes of the demand
and cost curves. This provides another contrast with Weitzman’s
setting.29

5.2. Multiplicative shocks

Suppose now that the intercept parameters a,and c,are constants,
while the slope parameters b,and d,are variable so that shocks are
multiplicative.>* Multiplicative cost shocks are a natural assumption if
capacity is variable because congestion costs are often assumed to
depend on the ratio of usage to capacity (and thus be homogeneous of
degree zero).?! Multiplicative demand shocks occur if the number of
agents with a given reservation price varies across states by the same
proportion at all reservation-price levels.

Applying eqn. (24), expected welfare in the unregulated and FBO
regimes with multiplicative shocks is:

A? b, A2 1
=—E{—" % EW=—E{——>.
2 {(bw+dw)2} 2 {bm+2dw}

If afee fis levied, usage is ¥, = (A —f)/(b» + d.,), and expected welfare
is

EW" (34)

EW =E
b

AA—f) f%m ff)z}

From the first-order condition EW/ /df = 0, the optimal fixed fee is

dw
7 AE{(hr::+(lu;>Z}
E by+2dy .
(bw+dw)*

Usage with the optimal fixed fee is strictly positive in all states. Expected
welfare is

2
()
EW' =—>2> 22
2 E by+2dy
(bo+du)’
With multiplicative shocks, demand and cost shocks can no longer be
treated jointly using a composite parameter such as A,for additive
shocks. To see why, note that in Fig. 4 a shock to the demand parameter

b affects only the net benefit curve whereas a shock to the congestion
coefficient d affects both the net benefit curve and the MECcurve.

(35)

% Goodkind and Coggins (2015) also study the possibility of corner solutions
in Weitzman’s model. They consider a polluting industry for which corner so-
lutions arise if there is either no abatement or complete abatement. Interest-
ingly, they find — contrary to the result here — that corner solutions favour
price control over quantity control.

30 Adar and Griffin (1976) consider multiplicative uncertainty in a theoretical
pollution-control model. Watson and Ridker (1984) assume multiplicative un-
certainty in an empirical study of air and water pollution control, and Hoel and
Karp (2001) do likewise in a study of stock pollutants.

31 If the cost function is linear, it takes the form C = c+ kN / s, where s is
capacity and k is a positive constant. Variations in capacity then translate to
variations in the congestion coefficient d in equation (21).
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5.2.1. Multiplicative cost shocks

If only multiplicative cost shocks occur (i.e., only the congestion
coefficient d is variable), a fee outperforms a TPS. This result is proved in
the Appendix and stated as:

Theorem 3. Assume that demand and cost curves are linear, and only the
congestion coefficient is variable. Then a fee outperforms a TPS.

Theorem 3 is a counterpart to Theorem 1 which applies for additive
demand and cost shocks. Theorem 3 is more limited in that it only ap-
plies to cost shocks. However, Theorem 3 is less restrictive in that the
permit constraint does not have to bind.

To see why a fee is superior, note that a shock to the congestion
coefficient d affects both the net benefit curve and the MECcurve. If
d increases, the net benefit curve rotates clockwise downwards while the
MECcurve rotates counterclockwise upwards. Both movements reduce
optimal usage. The range of optimal usage can vary substantially which
militates against a fixed permit quantity. By contrast, the downward
shift in the net benefit curve reduces the optimal fee whereas the upward
shift in the MECcurve increases it. The net effect on the fee is muted so
that a fixed fee performs relatively well. Consistent with eqn. (2) in
Weitzman (1974), negative correlation between the demand and cost
curves works in favour of price control.

5.2.2. Multiplicative demand shocks

With multiplicative demand shocks it is again possible to derive
conditions such that a fee is welfare superior to a TPS. The conditions are
more restrictive than for multiplicative cost shocks in that the permit
constraint must always bind. However, the conditions are less restrictive
in that additive shocks to both demand and costs can also occur. We
formalize this result as:

Theorem 4. Assume that demand and cost curves are linear, the conges-
tion coefficient d is constant, and the permit constraint always binds. Then,
with any combination of multiplicative demand shocks and additive demand
or cost shocks, a fee outperforms a TPS.

Theorem 4 is proved in the Appendix. The theorem is significant in
two respects. First, since it encompasses not only additive demand and
cost shocks but also multiplicative demand shocks it generalizes Theo-
rem 1.%% The joint probability distribution of parameters a, b, and c is
unrestricted so that Theorem 4 covers various types of shocks. In
particular, it covers demand shocks that affect the willingness to pay of
all users by the same multiplicative factor so that the demand curve
rotates about a fixed intercept on the horizontal (quantity) axis.>> Sec-
ond, the proof of Theorem 4 entails showing that given any permit

allocation Y, the fixed feef = dYsupports a more efficient usage level

than the TPS in every state. In particular, the fixed fee f =
dY*outperforms the optimal TPS not only in terms of expected welfare,
but in every possible state. The fact that a suboptimal fee Pareto dom-
inates the optimal TPS provides a clear sense that the fee is superior.>*

Theorem 4 does require that the optimal permit constraint always

32 1t also generalizes Czerny (2010) by extending consideration to both addi-
tive cost shocks and multiplicative demand shocks, as well as recognizing that
the permit constraint must bind.

33 The ratio a/bis then the same in all states. This type of shock corresponds to
vertical dilations of the demand curve in Padmanabhan et al. (2010). In
contrast to Theorem 4, they show that a profit-maximizing firm prefers to set
quantity rather than price. Indeed, if production is costless the
profit-maximizing quantity depends only on a/band hence is the same in all
states.

34 Formulas for the optimal f*and Y*are given in the Appendix. Unlike with
eqns. (27) and (29) for additive shocks, it is not generally true that f* = dY*so
that the optimal fee does not target the same output as the permit. Also, unlike

the fee f, the optimal fee f*does not necessarily yield a higher welfare than the
TPS in every state.
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Fig. 5. TPS outperforms fee with additive and multiplicative cost shocks.

bind. Parameters a, b, and ¢ thus cannot vary too much. If they do
fluctuate a lot, so that the constraint does not always bind, a TPS can
outperform a fee. This is demonstrated in the Appendix using an
example similar to that used to prove Theorem 2.

5.2.3. Multiplicative demand and cost shocks

If multiplicative demand and cost shocks both occur, the TPS and fee
cannot be ranked in general. To see this, suppose that A is constant and
the permit constraint always binds. The optimal permit allocation is

. A
Y " E{b, +2d,} 36)

and expected welfare is

. A?
EWS =——————. 37
2E{b, + 2d,,} (87)
Given eqns. (35) and (37),
2
N ‘s b, + 2d,
EW" —EWS=(E E{b,+2d,} — E{—=—""_%, 38
( {b +dm}) tho +24u) {(b,,, +d,,,)2} @8

where £means has the same sign as. Introducing the composite variables
Xy = by + dyand y,, = b, + 2d,,, eqn. (38) can be written

. 1N\ ¥
EW™ —EWS=(E{—% ) E{y,} —E{=25.
( {X,,,}) {y(‘ } {xrzu}

Suppose parameters b and d are perfectly negatively correlated, and vary
such that variable y,is constant. Only variable x then depends on the
state, and it follows from Jensen’s inequality that (39) is negative. A TPS
is then welfare-superior to a fee. If parameters b and d are negatively
correlated, demand is high when costs are high, and vice versa.>®
Optimal usage is then insensitive to the state, and a TPS performs well.
This is consistent with eqn. (2) and Stavins’ (1997) result that positive
correlation between demand and costs favours quantity control.

(39)

5.3. Additive and multiplicative cost shocks

Theorems 3 and 4 establish that, under relatively general conditions,
with either additive or multiplicative cost shocks a fee is welfare-
superior to a TPS. This is no longer true if both types of cost shocks

35 Correlation of this sort could be due to weather. For example, in bad
weather travelers may prefer to drive rather than walk or take transit, but
driving is slowed by poor visibility or slippery conditions. Similarly, after a
fresh snowfall skiing conditions are excellent but getting to the ski area can be
difficult.
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occur. Consider the example in Fig. 5 featuring two states, G and B. The
cost curve in state B has a larger intercept (c) than the cost curve in state
G, but a lower slope (d) so that it features a positive additive shock and a
negative multiplicative shock.>® The marginal social cost of usage is
lower in state G when usage is light, but higher when usage is heavy. The
demand curve crosses the MSCcurves where they intersect. Conse-
quently, FBO usage is the same in the two states and it can be supported
with a TPS by setting Y* = N = Nj. By contrast, a fixed fee cannot
support the FBO because the FBO fee is lower in state B than state G. In
this example, the net demand curve and marginal external cost curve are
positively correlated. Positive correlation works in favour of quantity
control — again consistent with eqn. (2) in Weitzman (1974).

5.4. Volatility of tradable permit schemes and fees

Volatility is generally considered to be an undesirable feature of
markets. In our setting, volatility can be measured for total usage, the
monetary cost of usage, and the full cost of usage. Some comparisons are
clear-cut. Total usage varies from state to state when usage is rationed
with a fee, but not when it is rationed using a TPS if the permit constraint
always binds. In contrast, the monetary cost of gaining access to the
facility is constant with a fixed fee, but varies with a TPS because the
equilibrium permit price depends on the state.

The relative volatility of the full costs, pfand p°, is not as obvious
since they vary in both regimes, with the amount of variation depending
on the nature of shocks. In the interest of space, attention is limited here
to additive shocks. As shown in the Appendix,

_ d*Var(a) + b*-Var(c) 4 2bd-Cov(a,c)
(b+d)

Var(pf)

)

Var(p®) =Var(a), and
Var(p®) — Var(p')=(b+2d) - Var(a) — b - Var(c) — 2d-Cov(a, c).

With a fee, the variance of the full cost increases with the variance of
demand, the variance of costs, and the covariance between demand and
costs. By contrast, with a TPS the variance of full cost varies one-to-one
with the variance of demand, and does not depend on costs. Hence, if
only cost is variable the full cost is more volatile with a fee. If only de-
mand is variable, the full cost is more volatile with a TPS. If demand and
cost are equally variable, the full cost is more volatile with a TPS unless
demand and costs are perfectly and positively correlated. Overall,
therefore, the relative volatility of full costs for the two control in-
struments depends on whether variability originates primarily with
demand or primarily with costs.

6. TPS vs. fees: nonlinear functions

The analysis in Section 5 is based on linear demand and cost func-
tions. If either function is nonlinear, Weitzman’s rule for ranking the
efficiency of prices and quantity controls applies only as a local
approximation. Studies of congestible facilities sometimes assume
constant-elasticity demand functions which are strictly convex. More
important, congestion is often a nonlinear phenomenon. At low usage
levels, users may not interfere with each other much, if at all. For
example, if the arrival rate of users at a server remains below server
capacity, and service times are uniform, no queuing occurs. Crowding at
outdoor recreational facilities is typically not considered problematic
unless usage exceeds carrying capacity. There is some evidence that

36 with road transportation this is possible if on bad days drivers are forced off
their normal route onto an alternative that is more circuitous, but has a higher
capacity. Similarly, in bad weather a narrow, scenic trail may be closed, and
hikers redirected to a rougher but wider alternative path.
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Fig. 6. Proof of Theorem 6.

visitors do not feel crowded unless the number of contacts exceeds their
expectations (Ditton et al., 1983; Michael and Reiling, 1997). There is
also evidence that, when crowding does become annoying, disutility
grows at an increasing rate with the number of encounters (Boxall et al.,
2003). Similarly, airport congestion can be very sensitive to small
changes in demand (Jacquillat and Odoni, 2015).

As far as road congestion, traffic engineering studies find that on
highways drivers can maintain free-flow speeds until flow reaches a
substantial fraction of capacity. Beyond this, speeds can drop rapidly
and even unpredictably. Traffic control strategies such as ramp metering
and perimeter control are used to avoid breakdown in flow (Menelaou
et al., 2017). Following the US Bureau of Public Roads (1964), traffic
engineers often specify the relationship between travel time, T, and
flow, Q, using a power function of the form T = To(1 + d(Q/K)*), where
Tois free-flow travel time, K is a measure of road capacity, and ¢ = 4. If
user cost is proportional to travel time, this function can be translated
into a cost function of the form C = ¢+ dN¥, which we consider below.

In this section we allow demand and cost functions to be nonlinear.
While the analysis is not as straightforward as in Section 5, several in-
sights can be derived. We begin by showing that Theorems 3 and 4 both
generalize. We then identify circumstances where a TPS is superior.

6.1. Potential advantage of a fee

6.1.1. Variable costs
If demand is stationary, a fee outperforms a TPS when certain con-
ditions are met. The key condition is identified in:

Assumption 2. For any pair of states, one state, ®, is more favorable
than another state, @, in the sense that (a) C,(N) < C- (N)for all N > 0,
and (b) C,,’ (NN, < C;’(N%)N"a.

2}

Assumption 2 (a) stipulates that at any usage level the user cost is
lower in state w than state @. Assumption 2(b) requires, in addition, that
the marginal external cost is lower in state @ than state @at their
respective FBO usage levels. If so, the FBO fee is lower in state @ than
state @: fo, (N9) <f°$(N"g)

Given Assumption 2(a), Assumption 2(b) is plausible insofar as states
with high private costs are likely to have high external costs. Never-
theless, if no restrictions are imposed on the demand function,
Assumption 2(b) is assured only under fairly restrictive conditions on
the cost function. As explained in the Appendix, a necessary condition is
that the cost curve be steeper in the less favorable state; i.e. C~’(N) >
C,’ (N)for all N > 0. A sufficient condition to satisfy Assumptions 2(a)
and 2(b) is that the cost function has the power form C,(N) = ¢+ d,N¢,
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where ¢ > Oand ¢ > Oare constants and only d,is state-dependent. If ¢ =
1, this reduces to the linear case which led to Theorem 3. As noted
above, the US Bureau of Public Roads (1964) proposed a power function
with ¢ = 4.

If Assumption 2 holds, states can be ranked in order from least
favorable to most favorable. If costs are variable, but demand is sta-
tionary, a fee then outperforms a TPS:

Theorem 5. Let Assumption 2 hold. If only costs are variable, a fee out-
performs a TPS.

Theorem 5 is proved in the Appendix. It generalizes Theorem 3 since
it applies regardless of the functional forms of the demand and cost
functions as long as they satisfy Assumption 2. Similar to Theorem 4, the
proof entails showing that given any permit allocation Y for a TPS, there
exists a fixed fee that supports a more efficient usage level than the TPS
in every state. The fee drives usage below Y in every state for which
optimal usage is below Y, and it supports usage above Y in every state for
which optimal usage is above Y.

6.1.2. Variable demand

Theorem 4 established that with linear functions a fee outperforms a
TPS if the congestion coefficient d is constant and the permit constraint
always binds. This result continues to hold for demand curves of arbi-
trary shape:

Theorem 6. Assume that the cost curve is linear, the congestion coefficient
d is constant, and the permit constraint always binds. A fee then outperforms
a TPS.

Theorem 6 is proved in Fig. 6 using a net benefit curve and MEC
curve as in Fig. 4, and taking a similar approach to the proof of Theorem
4. The MEC curve has a constant slope of d. The dashed line through
points f, ¢, and h has a slope of — d. Dotted line jehas the same slope. The

optimal permit constraint is Y*, and a fixed fee is imposed of ]? =dY*. If

the net benefit curve happens to cross the MEC curve at point b, both the
TPS and the fee support the optimum. If the net benefit curve crosses
elsewhere, neither instrument supports the optimum. In Fig. 6, the net
benefit curve crosses at point ¢ so that optimal usage is N° > Y*. The
deadweight loss from insufficient usage with the TPS is measured by
area abc. The deadweight loss from excessive usage with the fee equals
area ced. Now

abc > fbc > chg >jed > ced.

e N N N~
(1) @ (3) )

(40)

Inequalities (1) and (4) hold because the net benefit curve is steeper than
the MEC curve. Equality (2) is obvious. Finally, inequality (3) applies
because triangles chgand jedare equiangular, and side ghis longer than
side de. The chain of inequalities in (40) proves that the fee

foutperforms the TPS. A similar figure can be used to prove that fee fis
also superior to the TPS when optimal usage is below Y*. The optimal fee

f*, which generally differs from f, does not necessarily outperform the
TPS in every state, but it does yield (even) higher expected welfare.

In summary, Theorem 6 shows that a fee outperforms a TPS
regardless of the shape of the inverse demand curve or how it varies
from state to state. The reasoning is the same as for Fig. 4 and Laffont’s
result: the net benefit curve is variable and it is steeper than the
MECcurve.

6.2. Potential advantage of a TPS

Theorems 5 and 6 establish fairly general conditions under which a
fee outperforms a TPS. Nevertheless, they are limited in scope. Theorem
5 does not allow demand to vary, and it relies on Assumption 2 which
does not hold in many instances.

It does not hold in Figs. 3, 4, or 5, and in Fig. 5 the TPS outperforms a
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Fig. 9. Example with nonunique flat fee.

fee. Theorem 6 requires the cost function to be linear, and it rules out
capacity shocks that affect the congestion coefficient.
We now present an example with variable demand and a fixed, but

13

Economics of Transportation 21 (2020) 100149

nonlinear cost function in which a TPS dominates a fee. In the example,
shown in Fig. 7, the facility has a maximum capacity of K so that the cost
curve and MSCcurve both become vertical at N = K. There are two states
of demand, G and B. In both states, the capacity constraint binds in both
the unregulated equilibrium and the FBO. To support the FBO without
some form of non-price rationing such as queuing, a fee must be imposed
that is higher in state G than state B. A fixed fee cannot support the
optimum in both states. Yet, with a TPS, the FBO can be achieved simply
by setting Y* = K.%” If the planner does not know capacity precisely, it
could adopt a margin of safety by setting the TPS at, say, 95%of esti-
mated capacity.*®

This example shows that a TPS can outdo a fee if the cost function is
convex, or becomes sufficiently steep. FBO usage levels then vary little
across states. Viewed another way, the MEC curve can be steeper than
the net benefit curve. Note that with a linear demand curve, p = a — bN,
and the power cost function C = ¢+ dN¥, the absolute slope of the net
demand curve is b+ deN¢~!. The absolute slope of the MECcurve is
de?N¢1. The larger is ¢, the steeper the MECcurve relative to the net
benefit curve.

To explore this reasoning further, we use a numerical example that is
descriptive of peak-period automobile commuting. The cost function
does not vary, and has the functional form C(N) = ¢+ dN¢. Demand is
subject to either additive or multiplicative shocks with two states: good
days (G) and bad days (B). Parameters with fixed values are ag = 40,
bg = 0.002, and ¢ = 8. For additive shocks, ag = 50, and for multipli-
cative shocks, bg = 0.0016. The probability of a good day is set to either
0.2 or 0.8. Parameter ¢ governing the curvature of the cost function is set
to 1, 2, 3, or 4.° Parameter d is adjusted to maintain a relatively con-
stant usage level. There are 16 cases in all. For the eight cases with ¢ =
lor ¢ = 2, the fee outperforms the TPS. For the other eight cases with
e = 3or ¢ = 4, the TPS outperforms the fee. This provides some support
for the conjecture that a TPS has an advantage over a fee when cost
functions are sharply curved. de Palma et al. (2018) obtain a similar
result in a numerical study of route choice.

In summary, we have shown that a fee outperforms a TPS under
Weitzman’s assumptions (i.e., with linear demand and cost functions,
additive shocks, and a binding permit constraint). A fee is also generally
superior with multiplicative shocks. However, a TPS may be superior if
the permit constraint does not always bind, if the cost function is strictly
convex, or if usage is bounded by a capacity constraint.

7. An adaptive TPS

So far, the comparison of TPS and fees has been limited to a
dichotomous choice between basic schemes. The fee is set at a fixed
amount per usage that does not depend on either the state or total usage.
Similarly, the number of permits allocated each day is independent of
the state. Both schemes can be improved at the cost of additional
complexity. For example, Weitzman (1978) considered a combination of
price and quantity regulation. Kaplow and Shavell (2002) proposed a

37 This result is consistent with Akamatsu and Wada (2017) who show that a
planner who is uncertain about demand can still support the social optimum
using permits, but not a fee because the optimal fee depends on demand.

38 As noted above, traffic engineers often restrict traffic movements to avoid
flow breakdown. Hall (2018) argues that the same policy could be adopted with
a congestion charge. However, Anderson and Davis (2018) have recently
challenged the claim that heavy demand causes flow to break down. They
provide empirical evidence that drops in capacity are caused by supply shocks
such as road construction, disabled vehicles, and bad weather.

39 In traffic engineering studies, parameter ¢ is usually set between 2 and 5. In
our setting, the pertinent relationship is between usage cost and the number of
users on a given day or other time interval, and the duration of the usage period
may be endogenous. Depending on the structure of trip-timing preferences, the
equilibrium cost function can be linear (Arnott et al., 1993), near-linear (de
Palma and Marchal, 1999), quadratic (Braid, 1996), or some other function.
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nonlinear tax scheme for pollution in which the tax rate is chosen to
concide with the marginal pollution damage curve. This tax schedule is
superior to pure quantity control because quantity control is, in effect, a
specific nonlinear tax with no charge for emissions below the target, and
an infinite charge above it.

In this section we briefly explore an adaptive version of the basic TPS
that effectively combines quantity and price control. The modified TPS
is inspired by a pollution control scheme studied by Roberts and Spence
(1976).%C In their scheme, the government first issues tradable licenses.
It then imposes a per-unit tax on any firm that emits more than its license
holding, and grants a per-unit subsidy to any firm that emits less than its
holding. The tax protects firms against very high abatement costs, while
the subsidy gives them an incentive to abate further if abatement costs
turn out to be low.

The adaptive version of the TPS considered here operates similarly.
The government issues Y permits, as before. In addition, it offers to sell
further permits at a price s, and buy permits at a price r, where r < s.
Offers to buy and sell act as a collar on the price of permits by limiting it
to the range [r,s]. Since the values of r and s are fixed, the parameters
defining the TPS are independent of the state. However, the TPS is
adaptive because users can buy or sell permits once they learn the
state.*! Let ¢ denote the equilibrium price of permits with the collar, and
qothe price at which permits would trade without the collar. Depending
on the state, three outcomes are possible. If gy € [r, s|, no government
trades occur. If go < r, the government buys permits which raises the
price to g =r. Finally, if go > s, the government sells additional permits
which drops the price to q =s.

The optimal adaptive TPS is derived in the Appendix for the linear
model with demand shocks when the composite parameter A is uni-
formly distributed on the interval [Ag,A;]. The solution is nondegenerate
in the sense that, for all distributions with A; >A,, the government buys
permits when A is close to A, sells permits when A is close to A;, and
does not trade when A takes intermediate values.

The allocative efficiency of the adaptive TPS can be compared with
the efficiencies of the optimal flat fee and basic TPS using the index of
relative efficiency

_EW" —EW"
T EW°e —EW"’

e i=f,ca,

where a denotes the adaptive TPS. Index e'measures the efficiency gain
from scheme i as a fraction of the maximum possible gain that can be
achieved in moving from the unregulated equilibrium to the social op-
timum, EW° — EW™. The indexes work out to

2
c=1- V“A_SA) <—b Z d) : (41)
o1 Va%A)’ (42)
« Var(A) ( b+d \’
c=l-— <2b+3d> : 43)

All three schemes are fully efficient when there are no shocks (i.e., when
Var(A) = 0). All fall short of full efficiency when demand or cost is
variable. Consistent with Theorem 1, the fee is more efficient than the

40 Czerny (2008) presents this scheme diagrammatically, but does not
examine it analytically or derive its welfare performance relative to a fixed fee
or basic TPS.

41 As Schmalensee and Stavins (2017) explain, the Regional Greenhouse Gas
Initiative in the northeastern United States uses an auction that operates in a
similar way. When auction prices reach a specified level, additional allowances
are sold. There is also a price floor below which allowances are not sold at
auction.
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basic TPS. However, the adaptive TPS is more efficient than the fee. The
1-e¢* _

gap from full efficiency for the adaptive TPS is smaller by a factor I:f; =

2
<%> . Depending on the relative size of b and d, this factor ranges

from 1/4down to 1/9.

Fig. 8 compares the monetary price with a flat fee, first-best fee, and
adaptive TPS for a numerical example withb =1,d =1, Ag = 25, and
A; = 50. With the adaptive TPS, the government buys permits when
A € [25,35), sells additional permits when A € (40, 50|, and is inactive
when A € [35, 40]. It is active 80%of the time.** The adaptive TPS tracks
the FBO fee more closely, on average, than the flat fee. This is consistent
with Kaplow and Shavell’s (2002) argument that nonlinear tax schemes
outperform flat taxes.

8. Extensions

In this section we sketch two ways in which the model can be
extended. The first concerns lead times in usage decisions, and the
second concerns external costs of usage other than congestion.

8.1. Lead times in usage decisions

Usage decisions are often made well before demand and supply
conditions are fully known. Commercial airlines typically schedule
flights months in advance, and prefer not to cancel them unless cir-
cumstances are especially unfavorable. The same is true of railways and
trains. Recreationists can plan or book trips weeks or months before they
take place, and so on. When usage decisions are made far in advance,
they can be conditioned on predictable circumstances such as season
and scheduled operating hours, but not unpredictable events such as
infrastructure failures or weather at the time of usage.

Lead times in decision-making by users can be accommodated in the
model as follows. Let t denote the future time at which usage is
considered. For ease of reference, t will be called a day. Agents are
assumed to make usage decisions before t, and they neither balk nor
make a last-minute decision to use a facility once they learn the actual
state at t. Let E;denote the frequency distribution of days. For each ¢t,
there is a probability or frequency distribution of states. Let E,denote
the expectations operator over states conditional on t.

Two cases will be entertained as far as the regulator’s decisions. In
one, the regulator can adjust the fee and permit allocation according to t,
but not w. For example, flight schedules and hiking permits can be
varied by time of year. In this case, the analysis is qualitatively the same
for each t as if agents and regulator know only the unconditional dis-
tribution of states. It is then straightforward to show that a fee and TPS
are equivalent.*®

In the second case, the regulator cannot condition the fee or permit
allocation on either t or ».** Equation (12) determining usage with the

42 As shown in the Appendix, regardless of parameter values both buying and
selling are more frequent than not trading.

43 As noted in Section 2, this is true of Weitzman’s model for variations in
demand, and Laffont’s model for variations in costs.

44 It may still be possible for a facility manager to adjust operational measures
once the state is known. For example, an airport operator can set the maximum
number of takeoff and landing operations per hour according to either Visual
Meteorological Conditions or Instrument Meteorological Conditions. Similarly,
speed limits can be reduced during road work, entrance rates to museum ex-
hibits can be controlled during periods of high demand, and so on. Another
possibility is for the regulator to index the fee or permit allowance to some
observable measure or signal. For example, carbon emissions can be indexed to
national GDP in the form of an emissions intensity cap (Newell and Pizer,
2008). This has the advantage of relaxing the cap when abatement costs are
high, and tightening it when the costs are low. The disadvantage is that setting
the cap as a function of another, uncertain variable adds noise.
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fee is then replaced by

Ep{po (V) } =Eu{Co(N)) } +f, for each t,

and eqn. (13) for the fee is replaced by
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With the TPS, the equilibrium price of permits depends on t rather than
. Let Qcdenote the set of days when the permit constraint binds.
Equation (17) for equilibrium usage is replaced by

r= (44)

Eoi{po(N?)} =Eop{Cu(N{)} 4+ q;, for each 1,
and eqn. (20) is replaced by

Ercoc{q:Hy = Eicac {Em\' [Cw’ (Nf)Nf] } (45)

Y

Comparing (44) and (45), it is clear that the fee and TPS are not, in
general, equivalent unless usage decisions are the same on every day.
Thus, if the regulator cannot adjust instruments to either unpredictable
or predictable fluctuations, the two instruments still perform differently
under uncertainty even when users cannot adapt to unpredictable
fluctuations.

8.2. Additional external costs

Users sometimes create external costs other than congestion. Some
external costs are incurred by the population at large such as noise,
pollution, greenhouse gas emissions, and damage to flora and fauna. Call
them environmental costs. Environmental costs generally depend on the
amount of usage, and they can also depend on the state.*> Denote them
by R,(N). Other types of external costs are borne by users such as
damage to roads and rail track, wear and tear on hiking trails, depletion
of fishing stocks, and so on. Call them damage costs. Damage costs are a
function of cumulative — rather than instantaneous — usage, and they
mainly affect future, rather than contemporaneous, users. They can also
depend on the state.*® Denote damage costs incurred per unit of usage by
D, (U)where U = E,{N, }is average usage.47

Accounting for environmental costs and damage costs, expected
welfare is given by an extension of eqn. (11):

No
EW = E{ / Po(n)dn — Cy(Ny)N, — Doy(U)N,, — Rw(Nw)}. (46)
0

45 For example, certain pollutants are more harmful to health during meteo-
rological inversions.

46 For example, dirt roads and hiking trails are more susceptible to damage
after rainstorms than when they are dry. Rail track is more vulnerable to
cracking in extreme cold, and more vulnerable to warping in extreme heat.

47 For a given accounting period, average usage is proportional to cumulative
usage. The ecological capacity of a recreational ecosystem is typically a func-
tion of total seasonal use, so in this case the relevant accounting period is a
year.
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With a fee, the equilibrium usage condition is given by an extension of
eqn. (12):

Po(N,) =Co(N,,) + Do (U) + . “47)

The first-order condition for the optimal fee is

N, |
—E{D, (UN/} - E{ =2 3|f" =0. (48)
P of
Substituting (47) into (48) yields
, > A

£{ (e (), + R 0) 3| |

= L+ E{D,’(U)N,}. (49)
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Eqn. (49) is a generalization of (13).
With a TPS, the equilibrium usage condition is given by an extension
of eqn. (17):

\*

Po(NS) =Co (NS) + Do (U) + go- (50)
The first-order condition for the optimal permit allocation is
p‘“(Nz)7C‘U(NZJ)7C;11(NZJ)NZ)7DM(U) *
Epca, i . ‘ Y =0,
=D, (U)N,, — Ry’ (No)
or
Eveo,{q0}ly- = Eveca. {Co’ (N, )NS, + Dy (U)NG, + Ry’ (No) }H - (51)

Despite the fact that users do not immediately suffer the damage
costs they impose, marginal damage cost appears on the right-hand side
of (51) in the same way as the marginal external congestion cost.

Further insight into the implications of damage costs and environ-
mental costs can be gleaned with linear functions. In addition to the
demand and cost functions in (21), we adopt

D,(U)=g,U,

Ry (N) = (ry+euNy)Ny.

Damage costs are assumed to be proportional to usage, whereas total
environmental costs are quadratic with e, > 0.%8 With additive shocks,
expected welfare with the fee is given by a generalization of (28):

b—2e
2(b+d)*

b+2d+2

EW' :%(A -+
2(b+ e +2d +2g)
It the permit constraint always binds, expected welfare with the TPS is
given by a generalization of (30):

oo bt2d+2 AP
2(b+e+2d +2g)

The relative advantage of the fee over the TPS is given by an extension of

48 For example, environmental health costs may grow at an increasing rate
with the concentration of pollutants. In the case of recreational activities,
damage to flora and fauna can mount if hiking paths become so crowded that
hikers switch from designated trails to out-of-bound routes (Fleishman et al.,
2007). Similarly, at crowded campsites campers may pitch their tents on un-
prepared sites that are susceptible to damage.
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(31):

. b=2
A=EW' —EW" = ° 5.

2b+d)

The fee is superior to the TPS if and only if b > 2e. Thus, if envi-
ronmental costs are large enough, the TPS can outperform the fee. To see
that this is consistent with Weitzman’s rules, note that the inverse net
demand curve has a slope b+ d + g, and the MECcurve has a slope d +
g+ 2e. The MECcurve is steeper than the inverse net demand curve if
2e > b. When environmental externalities are present as well as
congestion, fluctuations in usage are more costly and this favours
quantity control — a point that Czerny (2010) mentions. This is an
important consideration in large cities, especially in China and India,
where the health costs of air pollution are comparable in magnitude to
the costs of traffic congestion.

This simple extension of the basic model ignores the possibility that
damage can be reduced by maintenance or other conservation activities.
If such actions are possible, users will not bear the full costs of damage
and the feedback effect of damage in limiting usage will be weakened.
The portion of damage costs that users do not incur will enter the social
calculus in the same way as environmental costs, and further strengthen
the relative performance of a TPS.

9. Conclusions

Tradable Permit Schemes (TPS) have been implemented at the con-
tinental, national, and regional level to control carbon emissions and
other pollutants. Slot trading and slot auctions have been used to control
usage of airports. Academic interest is now growing in the potential use
of TPS to regulate road transport. Advances in information and com-
munications technology have made the use of TPS conceivable for roads
and other congestible facilities such as recreational areas. TPS also have
an advantage in public acceptability over tolls and other user fees since
permits can be distributed free so that users in aggregate do not incur an
out-of-pocket cost. TPS thus offer a plausible alternative to fees as a
means of regulating access to facilities that are prone to overusage.

It is well known that TPS and fees can both support optimal usage of
a congestible facility in a stationary environment. What remains rela-
tively unexplored is how the two instruments compare when demand
and costs fluctuate, and both the quantity of permits and the fee are
constrained to be the same in all states. We find that, in general, a TPS is
relatively efficient if optimal usage levels are similar across states.
Analogously, a flat congestion fee achieves high efficiency if the first-
best fee varies little over states. When usage costs are variable, a fee
outperforms a TPS if the optimal congestion fee is higher in states where
the usage cost function is higher. A fee also tends to outperform a TPS
when the demand and cost functions are linear and do not vary too
much. However, under several other circumstances a TPS can outper-
form a fee. A TPS tends to be superior if the cost function is strongly
convex or if usage is bounded by a capacity constraint. A TPS has an edge
in flexibility if demand or costs fluctuate sufficiently that the permit
constraint does not always bind. And a TPS is advantageous if exter-
nalities such as pollution are present that, unlike congestion, do not give
agents direct feedback on the socially efficient level of usage.

Further analysis with nonlinear functions, empirically-based proba-
bility distributions of states, and facility—specific characteristics is
needed to assess the robustness of these findings. For facilities such as
roads that are generally accessible at all times, usage tends to spread out
by time of day as demand increases, and equilibrium costs rise more
smoothly than for facilities with restricted operating hours. Similarly,
for facilities with multiple sites or routes, usage can spread out over
space. Downhill skiing areas present a more complicated case because
congestion can occur on the slopes, as queues for ski lifts, on connecting
trails, and at the lodge (Barro and Romer, 1987).

The model can be extended in various ways. It can encompass other

16

Economics of Transportation 21 (2020) 100149

choice dimensions besides the amount of usage including time of use,
travel mode for transportation, hiking trail, or visit duration for recre-
ation. Nonatomistic users can also be considered such as major airlines
that individually account for a substantial fraction of total airport traffic.
As Brueckner (2009) shows, with nonatomistic users congestion fees and
TPS are no longer equivalent even without uncertainty.*’

In the model the regulator cannot condition either the number of
permits or the fee on the state, but the regulator does know the proba-
bility distribution of states. In practice, this may not be the case. The
frequency of floods, windstorms, and other severe natural events is
evolving as the climate changes. Nature areas and other ecosystems may
be susceptible to catastrophic or irreversible effects. Human-caused
shocks such as transit strikes and terrorist attacks are also hard to
quantify. The performance of quantity controls and price controls may
differ in the face of these uncertainties, and it may be wise to adopt
policies that are robust to the worst circumstances.

Yet another possibility is to consider a system of multiple permits in
which separate permit constraints are imposed on each facility within a
network or group of facilities. Several questions arise in such a setting.
Would a multiple permit scheme be welfare-superior to a single inte-
grated scheme? If so, would the advantage be large enough to outweigh
the greater administration and compliance costs? What happens if fa-
cilities are controlled by different entities? Czerny and Lang (2019)
consider two airports with interconnecting flights and local objective
functions that independently choose between setting fares and imposing
slot controls to constrain traffic volumes. They show that, in general,
independent decision-making does not yield a first-best outcome. Each
airport ignores the effects of its decision on welfare at the other airport.

We conclude with a few comments on the potential acceptability and
equity advantages of TPS relative to tolls for road travel. Since permits
can be distributed free, drivers do not have to pay a charge to a gov-
ernment or road administrator. This avoids objections, often raised
against tolls, that permits serve as a cash cow, or constitute double
taxation. It also addresses equity concerns that the rich can buy time.
Laboratory experiments by Exley and Kessler (2019) indicate that peo-
ple care more about inequity in time than inequity in money. This may
help to explain aversion to policies that allow users to bypass queues on
roads, as well as other facilities such as airports, amusement parks, and
hospitals. Controlling access using permits rather than tolls is likely to be
less controversial.

A potential weakness of TPS is that there is no obviously acceptable
way to distribute permits.°® Our model features a single facility, and
potential users are identical other than for their willingness to pay. In
reality, travel takes place on extensive road networks at different times
of day. Individuals differ in numerous ways: residential and workplace
locations, income, opportunity cost of travel time, flexibility in when to
travel, frequency of travel, and so on. Depending on the scope of a TPS,
only a small fraction of agents may need permits. Allocating them to
every resident of a large area would leave few permits in the hands of
those who need them. Yet, targeting permits to these individuals may be
viewed as inequitable. It also risks distorting behavior in undesirable
ways (e.g., encouraging vehicle ownership, changing place of residence
or work, altering route, etc.).

Similar issues arise with credit-based congestion pricing (CBCP).
CBCP involves paying tolls rather than using permits, and individuals
are given money endowments (i.e., credit) to offset the cost of paying
tolls. Yet, despite these differences, the distribution of credit raises
similar problems to the distribution of permits. Kockelman and

4% Nonatomistic or “large” users have an incentive to internalize their self-
imposed congestion when they can affect the total amount of usage. Discrimi-
natory charges based on user size are then necessary to support efficient usage
(Brueckner, 2002). A TPS is free of this complication, although inefficiencies
may arise if large users exercise their market power in trading permits.

50 We are grateful to an anonymous referee for raising this point.
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Kalmanje (2005) describe how CBCP would work, and summarize public
attitudes towards it. Gulipalli et al. (2008) survey expert opinions.
Transport economists raised concerns about the distribution of credit.
They considered it unfair for everyone with a driver’s license to receive
credit, whether or not they actually pay tolls. Some transport economists
opposed basing credit allocations on income. Doing so might be
administratively burdensome, and would make CBCP like a welfare
program. Economists generally favour addressing distributional goals
using income taxes, rather than distorting prices for goods and services.
Allocating credit to vehicle owners, on the other hand, would tend to be
regressive. Gulipalli et al. note that basing credit on residential location
might be advantageous if tolling is widespread, while basing it on dis-
tance driven might be better if tolling is limited to highways. They
provisionally settle on basing it on vehicle registration as the best of
imperfect alternatives, noting that owners of more than one vehicle
should receive only one credit allotment.

In an application of CBCP to Austin, Texas, Kalmanje and Kockelman
(2004) assume that credit is distributed to all residents with a valid
driver’s license. In another application to Dallas-Fort Worth, Gulipalli
and Kockelman (2008) consider several allocation mechanisms
including to all registered vehicle owners, and restricting credit to
commuters who use freeways. Yet another possibility would be to favour
residents who lack good access to public transit. In summary, deciding

A Appendix (for online publication)

A.1 Bounds on the optimal fixed fee (Section 4.1)
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how to allocate credit or permits is a difficult question that requires
further research.
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Usage with the FBO fee in state w, N7, is defined implicitly by the condition

Po(Ny) = Co(NG) + 13

Usage with the fixed fee in state o, N/, is defined implicitly by the condition

Po(Ny) =Co(N,) +1-

Iff >f; then N, < N°

2] ®

for all @ € Q. Welfare can be improved by marginally reducing fin order to increase N closer to N° in every state. Similarly, if f <

[2] 2}

f°then N/, > N°for all @ € Q. Welfare can be improved by marginally increasing f in order to reduce N, closer to N°in every state.

o

A.2 Example of nonunique optimal fixed fee (Section 4.1)

The example features linear functions as in Section 5. The cost function, C(N) = dN, is stationary. There are two states of demand, B and G, which
occur with probabilities goand 1 — g, respectively. In state B, the inverse demand curve is ps(N) = ag — bN. In state G, the inverse demand curve is°!

agc —bN for N < (ag—T)/(b+d)
PG(N):{ 0 for N> (ag —T)/(b+d)

Parameter values are such that ag > ag, and I € (f3.f¢)where f2is the first-best fee for state w, given in eqn. (25). The example is constructed so that
two distinct fees can yield the same expected welfare. One fee is f = fywhich supports optimal usage in state B, N3, without affecting usage in state G.
The other fee satisfies f € (I',fg). This larger fee reduces usage in state G towards N2while driving usage in state B below Ng. It is straightforward to
show that the two fees yield the same expected welfare if parameter values satisfy:

(p(ac — ap)’ — a)d* +2d(b +2d)al — (b + 2d)’T* =0.
One such instance is ag = 20, ag =10,b =1,d =1, =5, and g = 0.25. The low-fee solution is

f=f3=33, Ny=Ny =33, Ng=715.

The deadweight loss from overusage in state G is shown by area defin Fig. 9. The high-fee solution is

51 Contrary to what is assumed in Section 3, the inverse demand curve in state G is not differentiable. It can be closely approximated by a smooth function that still
illustrates nonuniqueness.
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f=5.83, Nz=2083, Ng=7.083.

The deadweight loss from underusage in state B is shown by the dark area abc, and the deadweight loss from overusage in state G is shown by the
small dark area within area def. The high fee balances the two areas because state G is three times as likely as state B. Expected welfare for both fees is
EW = 53.385.

A.3 Positive usage with the optimal fixed fee (Section 5.1)

Unregulated equilibrium usage is given by eqn. (23): N* = A, /(b + d). The permit constraint is (29): Y* = A/(b + 2d). The constraint binds if

Ay _ b+d

A bt A-D
The optimal fixed fee is given by eqn. (27): f* = dA/(b + 2d). Usage is N, = (A, — f*)/(b + d), which is positive if

A, d

= > . .

A ~b+2d (A.2)

Condition (A.2) is satisfied strictly if (A.1) holds.
A.4 Proof of Theorem 2 (Section 5.1)

Consider an example with two states, G and B. Expected welfare for the two states in the unregulated and FBO regimes is derived from eqn. (24):

b
EW'=——— (pA; + (1 — p)AZ),
2(b+d)2 (@ 3t (1-9) (,),
0 __ 2 _ 2
EW =20+ 2d) (A; + (1 —p)A7).
Expected welfare with the fee is given by eqn. (28):
. (pAs + (1 — p)Ac) b )
pwr —#4s 1-9)(Ac — Ap)". A3
2(b+2d) 2(b+d)zp( SO)( G B) ( )

This formula is applicable only if demand in state B is positive, which requires

Ap (1-g)d

S S 2 iy A4

Ag b+ (2—-@)d @4
Expected welfare with a TPS that binds in both states (and achieves at least a local optimum) is given by eqn. (30):

1 2
EWS . =— (@A 1 —@)Ag)".
Wi 2(b+2d)(p s+ (1 = 9)Acg)

The TPS binds in both states if N > Y*. Given egns. (23) and (29) this requires

Ay (1 -@)b+d)

Ag “b+2d—gb+d)
Finally, expected welfare with the TPS when it binds only in state G with Y = Nis derived from eqn. (24):

b 1

EWS = A 1 — )AL, A5
¢ 2(b+d)m”+2(b+2d)( Pl (49
The TPS binds only in state G if Ny < Ng. Given eqn. (23), this requires

Ap b+d

Ap _b+d A6

Ag < b+2d (A.6)
Choosing the TPS to bind only in state G is welfare-superior if EW; > EWy, or

A V1—

B 14 (A7)

A T—g@+d/(b+d)
The RHS of inequality (A.7) exceeds the RHS of inequality (A.4). A range of values of Ag /Atherefore exists such that both constraints are satisfied.
The TPS is welfare-superior to the fee if EWg > EWF". Using eqn. (A.3) and (A.5) this implies

Ap _ VI-—p—(1-gp)

B

Ac 12
Given Theorem 1, condition (A.7) must hold when (A.8) is satisfied. The RHS of inequality (A.8) exceeds the RHS of inequality (A.4). Hence the

nonnegativity condition on demand with the fee can be satisfied when condition (A.8) holds. Note, finally, that condition (A.6) is satisfied when (A.8)
is satisfied. If condition (A.4) fails, then both the fee and the TPS are optimized for state G and support the same usage level. [l

(A.8)
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A.5 Proof of Theorem 3 (Section 5.2)

Both the cost function, C,(N) = ¢+ d,N, and the FBO fee, f (N°) = C,,’ (N%)N?, = (a — ¢)d, /(b + 2d,), are increasing function of d,,. States with

w/ o

lower costs (i.e., lower d,,) thus also have lower marginal external costs and FBO fees. Assumption 2 is therefore satisfied and Theorem 5 applies. i
A.6 Proof of Theorem 4 (Section 5.2)

In Theorem 4, parameters a, b, and ¢ can vary with the state, but d is constant. Consider any state w. To economize on notation, the dependence of
variables on w is suppressed. Welfare is given by eqn. (22). If the permit constraint binds, then N = Yand welfare with the TPS is

b+ad,,

We=AY — 5 (A.9)
Suppose the fixed fee is set to f = dY. Usage is then N = (A — dY)/(b + d), and welfare with the fee is
A—dY\ b+2d (A—dy\®
f _
" A<b+d> 2 (b—i—d) (A.10)
A Ad? d(b+2d),

+ —
2(b+d)}?  (b+d) 2(b +d)’?
Given (A.9) and (A.10), the difference in welfare is
b
W —W'=——(A—(b+2d)Y)’ >0.
s o2

Welfare is strictly higher with the fee except in states for which A, — (b, + 2d,)Y = 0(.e., for which Y = N?). Hence, unless optimal usage is the
same in all states the fee strictly outperforms the TPS. ll

The proof of Theorem 4 uses the fee f = dY. The optimal fee, f*, can be derived using eqn. (14); it works out to

Ay
E{ (d+by)? }
1 1
E{m} + dE{ (d+bl,,)2}

The optimal permit allocation can be derived using eqns. (17) and (19):

f=d

Y= A
T E{b,}+2d

In general, f* # dY*. Theorem 4 can also be proved by comparing expected welfare with the fee f*, and expected welfare with the permit allocation
set to Y*.

A.7 Example with multiplicative demand shocks in which TPS outperforms fee (Section 5.2)

Consider an example in which only the slope of the demand curve is variable. Parameter b has a two-point distribution: b = bgwith probability g,
and b = bgwith probability 1 — gowhere bg > bg > 0. Demand is higher in state G than state B.

Suppose the permit allocation is set to support the FBO in state G. The permit constraint does not bind in state B if by > b + d. Using eqn. (34),
welfare with the TPS is

gobg 1—¢ )
EW< =A? .
(Z(bs +d)’ 2(bg +2d)

Using eqn. (35), welfare with the fee is

2
» -
AZ <b3+d + bc+d>
EW™ =

T plsr2d) | (p)(bg2d)
(bg+d)* (bg+d)?

Suppose g = 0.5,d = 0.5, and bg = 1. Then EW* <EWFif by > 3.31. The TPS dominates when demand is so low on bad days that it is optimal to
ignore bad days and support the FBO on good days.

A.8 Volatility of the full price of usage (Section 5.4)

A.8.1 Fee regime
The full price of usage isp/ = a— bN'with N/ = (A — f)/(b + d). Substituting for f using eqn. (27) gives p/ = (da + bc + bdA /(b + 2d))/ (b + d),
which has a variance
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_ d*-Var(a) + b*-Var(c) + 2bd-Cov(a,c)

Var(p’ . All
ar/) (b+a)* 1D
A.8.2 TPS regime when permit constraint always binds
The full price of usage is p° = a— bYwith Y = A/(b + 2d)from eqn. (29). Hence p° = a— bA/(b + 2d)which has a variance
Var(p©) = Var(a). (A.12)

Given (A.11) and (A.12),
Var(p) — Var(p/)=(b +2d) - Var(a) — b - Var(c) — 2d-Cov(a,c).

A.9 Rankings of states with variable costs (Section 6.1)
This appendix examines when Assumption 2 holds with no restrictions on the demand curve. Consider any pair of states, and call them good (G)
and bad (B). FBO usage levels are determined by the respective conditions
p(Ng) =Co(Ng) + Ca” (NN, (A13)
P(N3) = Cy(Ny) + C’ (N3N (A14)
FBO fees are fy, = Cg’(Ng)Ngand f = Cp’ (Ny)Ny.
Suppose the cost function in state @ € {G,B}has the form

Co(N)=c +d,N*, (A.15)

where ¢ > Oand ¢ > 0. Eqn. (A.13) and (A.14) become
p(NG) =c+ (1+€)da(Ng)",
p(Ng) =c+ (1+e)dp(Ny)".

Assumption 2(a) requires dg > dg. It then follows that N < N, p(Nj) > p(Ng), and f3 = edp(N3)" > fg = edg(Ng). Assumption 2(b) is therefore
satisfied as well. Note that the cost function does not have to be convex since parameter ¢ can be less than 1.

We now return to general cost functions and identify two necessary conditions for Assumption 2 to hold.

Condition 1 The cost function must be steeper in less favorable states. With two states, G and B, the requisite condition is Cg’(N) > Cg’(N)for all N > 0.

To see that Condition 1 must hold, note that if the demand curve is nearly vertical then N =~NZand the condition f > f&simplifies to Cz’(N) >
Cg’(N).

Condition 2 Congestion-free costs must be the same in all states.

To see this, consider a linear variant of eqn. (A.15):

Co(N)=cg+deN, Cy(N)=cy+dyN,

with dg > dg. Assumption 2(a) requires ¢z > cg. Suppose the demand curve is horizontal with a choke price of p. First-best fees are

D—cp
2

0 P—c¢g 0
f(;: ) 7fB:

Assumption 2(b) requires f3 >f¢, which implies ¢z < cg. Hence ¢z = cg.
A.10 Proof of Theorem 5 (Section 6.1)

We first prove Theorem 5 for cases in which the permit constraint binds in all states. We then show that the same reasoning applies if the constraint
does not bind in some states. To facilitate the proof, we assume that the number of states is countable and finite. A similar proof applies if Qis
continuous.

List states from worst to best as per Assumption 2 so that for any states w and w+ 1, N_, ; > Noand f;, ; <f,.Letk be the unique state such that Y €
[NE Ng -

Lemma 1. There exists a fee that is welfare-superior to the TPS for states k and k + 1.

Proof of lemma: Let f be the fee. Clearly, f € [f;,./7]. A value of f within this interval that is welfare-superior to the TPS can be found by trial and
error as follows. First set f = f. Since f,; <f¢, Nix1(f) < Np,q. If Ny (f) > Ythen Niy1 (f) € [Y,Np,,). The fee supports the FBO in state k, and an
outcome equal to or better than the TPS in state k + 1. Suppose instead that Ny, (f) < Y. Reduce funtil Ny, (f) =Y. Instate k + 1the fee supports the
same outcome as the TPS. Since Ci(N) > Ci;1 (N)for any N > 0, Ni(f) <Ni1(f). Moreover, since f < f}, Ni(f) > Nj. Hence Ni(f) € (Ng,Y), and in state
k the fee supports an outcome closer to the optimum than the TPS. Thus, the fee is welfare-superior to the TPS in both states k and k+ 1. li

For the rest of the proof of Theorem 5 the fee is held fixed at the f identified in Lemma 1. Consider any state j < k. Given C;(N) > C¢(N), N;(f) <
Ni(f) < Yso that Nj(f) < Y. Given f < fy < f], Nj(f) > N;. Hence N;(f) € (N7, Y), and usage in state j is closer to the FBO than with the TPS.
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Now consider any state j > k + 1. Given Cj(N) > Cy.1(N), Nj(f) > Ni41(f) > Yso that Nj(f) > Y. With f >f}’, Nj(f) < Nj. Hence N;(f) € (Y,N/)and
usage in state j is closer to the FBO than with the TPS. In conclusion, the fee is at least as efficient as the TPS in every state, and strictly superior in at
least some states.

As a final step, suppose the TPS does not bind in all states. Since the unregulated usage level is strictly increasing with the state as per Assumption 2,
it must not bind in states 1.. jfor some j > 1. The fee is set in the same way as when the permit binds in all states so that f € [f}_;,f}/for some state k.
Usage in states k and higher is welfare-superior with the fee as before. Sincej < k, f < fl" . The fee therefore reduces usage in states 1...jpart way toward
their respective FBO values N7...N7, and thus improves efficiency in these states. By contrast, the TPS does not improve efficiency in states 1.. jat all.
Thus, the fee is again at least as efficient as the TPS in every state, and strictly superior in at least some states. |l

A.11 Analytics of the adaptive tradable permit scheme (Section 7)

Let Q.denote the set of states in which the initial permit allocation prevails and the government neither buys nor sells permits. Let Q.denote the set
of states in which the government buys permits, and Qsthe set of states in which it sells permits. Usage in the three intervals is governed by the
equations

Po(No)=Co(Ny)+r, weQ,
N, =Y, [ORS] Qrv

pw(Nn ) = Ca)(Nm) +s5, o€ L.

With the linear model,

1
N(,):W(A—r)7 wE Q,,
No=—(A—g)=v, weQ (A.16)
(u_b+d q)=1, g [} .
No=——(A—s), weQ
0)_b+d bl 'S .

Parameters Y, r, and s are chosen to maximize expected welfare in (11). The optimal permit allocation is
KC

Y=
b+2d

(A.17)

where A_is the mean value of A for ® € Q.. The first-order conditions for r and s are

EweQ, {Cw ’ (Nw)Nwog_,w}
= . (A.18)

N,
EwEQ,{ or }

Emeﬂ\ { Cm ’ (N/H )N‘"()Lsm}
. | (A.19)

Ny
Emeﬂs{ 0 }

Eqns. (A.18) and (A.19) have the same structure as eqn. (13) for the optimal fee.
Assume now that variable A = a — cis uniformly distributed on the interval [A,A;1]. Eqn. (A.18) and (A.19) simplify to

4 5
" b rad (%20

Y
2 3 A21
S =prad (A.21)

Let A,.and A denote the boundaries between sets Q,, Q., and Qso that Q, = [A,A), Q. = [Ar,As), and Q = (Ai,A;1]. Then A, = (A +Ar)/ 2,
A, = (A + Ay)/2, and A, = (A + A1)/2.
Setting N| Aca, = Yand using (A.16), (A.17), and (A.20) yields

(b+2d)A,. = dAg + (b+ d)Aq. (A.22)

Setting N| Aa, = Yand using (A.16), (A.17), and (A.21) yields
(b+2d)As =dA) + (b+d)A,. (A.23)

The solution to (A.22) and (A.23) is
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(b +2d)Ao + (b + d)A,
2b+3d ’

A=

(b +d)Ay + (b +2d)A,
2b+3d

Au=

Substituting these formulas into eqn. (A.20) and (A.21) gives

. d((3b+5d)Ag + (b + d)A))
2(b+2d)(2b +3d)

_d((b+d)Ag + (3b +5d)A,)
T 2(b+2d)(2b+3d)

*
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Note that in the limit A; —Aq, r* = s* = dAo/(b + 2d)which is eqn. (27) for the optimal fee, f*.

The probabilities of the three states are

b+d

b+d

P =55

$(Q) = 3d

The government is equally likely to buy as sell permits, and trading in either direction is more frequent than not trading.
Routine algebra yields eqn. (43) for the relative efficiency of the adaptive TPS. The relative efficiencies of the fee and the basic TPS are readily

derived using eqns. (28) and (30), respectively.
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GlossaryLatin characters

a, b, ¢, d, e g r: parameters of cost functions
C(N) :: user cost function

C,(.) : user cost function in state @

D, (.) :: damage function in state @

E,, : expectations operator

f i usage fee

MEC :: marginal external cost

MSC :: marginal social cost

N:: total usage

P(N) :: willingness to pay for usage

%,, :: probability of state w, w € Q

q = price of one permit

R, (.) :: environmental cost function in state ®

t:: date of usage

U:: average usage

W :: social surplus or welfare

Y :: total number of permits distributedRegimes (denoted by superscripts)
¢ :: permit (or credit)

f o fee

i:: index of regimes

n :: unregulated

o :: first-best optimumGreek characters

o:: a particular state, with w € Q

Q :: set of possible states

Q¢ :: set of states in which permit constraint binds
Qy :: set of states in which permit constraint does not bind
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