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A B S T R A C T   

It is well known that price and quantity regulation are not equivalent under uncertainty. This asymmetry has 
been a factor in the debate about whether to use taxes or Tradable Permit Schemes (TPS) for controlling 
greenhouse gas emissions. We analyze the allocative efficiency of a TPS for a congestible facility such as an 
airport, a road, a recreational area, or a museum that experiences supply and demand shocks. The number of 
permits issued cannot depend on the state. We compare the efficiency of a TPS and a congestion fee when the 
level of the fee is similarly constrained to be the same across states. When demand and cost curves are linear, a 
fee outperforms a TPS for several combinations of additive and/or multiplicative demand and cost shocks. More 
generally, the ranking depends on the nature and magnitude of demand and cost shocks, the elasticity of the cost 
function, and whether or not the permit requirement always binds. A TPS tends to perform well when first-best 
usage levels are similar across states. Analogously, a fee is relatively efficient if first-best fees are similar across 
states.   

1. Introduction 

Many types of facilities are prone to congestion including roads, 
airports, seaports, and recreational areas. The estimated costs of 
congestion delays to consumers, firms, and the overall economy are 
large.1 The standard prescription in economics to internalize congestion 
externalities is a congestion toll or fee. The idea was first proposed for 
roads by Pigou (1920), and there is now an extensive literature on 
road-congestion pricing (see Tsekeris and Voβ (2008), de Palma and 
Lindsey (2011), and Santos and Verhoef (2011) for reviews). 

Marginal-cost pricing of airport congestion was explored by Carlin and 
Park (1970), and a large body of work on airport congestion fees has 
developed (see Gillen et al., 2016). Crowding at recreational areas has 
also been a recurring concern — both at remote areas where solitude is 
valued highly (e.g., Cicchetti and Smith, 1973; Smith and Krutilla, 1974) 
and at popular destinations where visitors get in each other’s way 
(Manning, 1999).2 

Advances in information technology have reduced the costs of 
imposing congestion-based fees and informing users about fee sched
ules. However, congestion fees are unpopular. There has been 
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E-mail addresses: andre.depalma@ens-cachan.fr (A. de Palma), robin.lindsey@sauder.ubc.ca (R. Lindsey).   

1 According to Schrank et al. (2017), in 2014 congestion in major US urban areas imposed on drivers approximately 6.9 billion hours of travel delay and 3.1 billion 
gallons of extra fuel consumption with an estimated total cost of $160 billion. Inrix (2016) reports that traffic congestion in the UK cost motorists more than £30 
billion in 2016. According to Ball et al. (2010), in 2007 the costs of air traffic congestion in the United States exceeded $36 billion.  

2 Traditionally, fees at public recreational facilities have been set at modest levels to achieve partial cost recovery while encouraging usage. Managing demand has 
not been a priority. Nevertheless, in the US there has been slowly growing interest in using fees to redistribute usage over time and space as well as to generate larger 
revenues. In 1996, the US government enacted a Recreation Fee Demonstration Program to determine the feasibility of using fees to achieve greater cost recovery for 
operation and maintenance of recreation areas and sites (Espey, 2006). In 2004, the program was replaced by the Federal Lands Recreation Enhancement Act 
(American Recreation Coalition, 2004). 
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longstanding public and political opposition to road tolls (Jaensirisak 
et al., 2005) and airport congestion fees (Levine, 2008).3 In general, fees 
are also unpopular at recreational areas (Watson and Herath, 1999; 
Anderson and Freimund, 2004). 

In the case of road pricing it is often argued that toll revenues must be 
dedicated to local transportation to overcome opposition to tolls 
(Jaensirisak et al., 2005). Yet, if revenues are dedicated to expanding 
roads or improving public transportation, years may pass after tolling 
begins before drivers experience any benefits. This creates a 
chicken-and-egg problem: investments are needed to make tolling 
acceptable, but revenues from tolls are needed to fund the investments. 
Moreover, the public may fear project delays and cost overruns, or even 
that projects will be cancelled — perhaps due to a change of 
government.4 

Quantity-based tools are an alternative to fees for controlling 
congestion, pollution and other externalities, and they are widely used. 
Road travel is rationed by license plate restrictions (Gu et al., 2017), 
perimeter control (Menelaou et al., 2017), traffic calming (De Borger 
and Proost, 2013), and other measures (Victoria Transport Policy 
Institute, 2014). Slot controls are used at airports (Gillen et al., 2016), 
and quotas are imposed on access to recreational areas (Scrogin, 2005). 
Quantity controls are generally less efficient than price instruments 
because they fail to allocate usage to agents who value it the most. 
However, efficiency can be improved if agents are granted usage rights 
and allowed to trade them. Slot trading has occurred at US airports since 
1986, and in 2008 the European Commission developed guidelines for 
airport slot trading.5 

There is now growing interest in the use of Tradable Permit Schemes 
(TPS) to control road traffic congestion.6 With a TPS, motorists must 
acquire a permit to make a trip, traverse a road link, or enter a restricted 
area — depending on how the TPS is set up. By limiting the number of 
permits issued, the amount of travel and the resulting congestion can be 
controlled. Unlike with tolls, if permits are distributed free, drivers in 
aggregate do not incur an additional net monetary cost to travel. Thus, 
permits may be able to avoid two common objections to road pricing: 
that it constitutes double taxation (i.e., taxpayers pay for road con
struction, and again to use the roads), and that it entails paying for 
something that was previously free. TPS are often viewed as more 
equitable, too. It is often claimed that tolling is vertically inequitable 
because lower-income individuals are willing to pay less for quicker and 
more reliable trips. This concern is muted with a TPS if permits are given 
out without charge. Moreover, lower-income individuals and house
holds tend to travel less by car, and hence can earn income by selling 
excess permits. TPS have the further advantage that motorists gain 
immediately, rather than having to wait until any promised road or 

public transport improvements are completed. We further discuss the 
potential acceptability and equity merits of TPS in the conclusions. 

With a few exceptions noted in Section 2, uncertainty has not been 
considered in weighing the relative merits of congestion fees and 
quantity controls for congestion management. However, as Weitzman 
(1974) and others have shown for activities such as pollution control 
where consumers do not directly bear the costs of market failure, price 
and quantity regulation are not equivalent if regulatory instruments 
cannot be adapted to prevailing demand and cost conditions. This has 
been a factor in the debate about whether a carbon tax or a 
cap-and-trade scheme is better for controlling greenhouse gas emissions 
when the rate of climate change and the costs of adaptation and 
abatement are uncertain. Uncertainty is also relevant for transportation, 
recreation, and other congestible facilities where demand fluctuates, 
and capacity or other cost shocks occur. However, the analytics of 
congestible facilities differ from other goods and services because 
congestion provides negative feedback to users that limits the size of the 
deadweight loss due to overusage. 

This paper has two main goals. One is to explore the operation of a 
TPS for congestible facilities when demand and supply conditions are 
variable, and the quantity of permits issued must be the same regardless 
of the state. The second is to compare the allocative efficiency of a TPS 
and a congestion fee when the level of the fee is similarly constrained to 
be independent of the state. In our model, agents are risk neutral and 
learn the state before deciding whether to use a facility. Predictable (e. 
g., seasonal) and unpredictable fluctuations in demand and supply are 
thus analytically equivalent, and can be treated within a unified 
framework. We assume that agents are identical other than for their 
willingness to pay, and consequently we do not compare the welfare- 
distributional effects of a TPS and a congestion fee. As noted above, a 
TPS may have a significant advantage over a fee in terms of equity and 
public acceptability. By ignoring equity, our comparison is arguably 
biased against TPS. Nevertheless, we find that a TPS can outperform a 
fee in efficiency under certain plausible conditions. 

Our main results are as follows. Similar to Weitzman (1974), we find 
that a TPS performs well when first-best usage levels are similar across 
states. Analogously, a fee does well if first-best fees are similar across 
states. Yet, when we apply Weitzman’s assumptions to our model, the 
results differ sharply. Weitzman showed that with linear demand and 
cost curves, and additive shocks, quantity control dominates price 
control if the marginal social cost curve is steeper than the demand 
curve, and vice versa. By contrast, we show that a fee outperforms a TPS 
regardless of the slopes of the curves as long as the permit constraint 
always binds (i.e., the number of permits issued is less than the unreg
ulated level of usage so that permits trade at a positive price). A fee also 
outperforms a TPS if, in addition to additive shocks, there are multi
plicative demand shocks.7 

These clear-cut results appear to militate against the use of a TPS as 
an alternative to a congestion fee. Yet, on further exploration, we 
identify several plausible circumstances in which a TPS can be superior. 
First, under Weitzman’s (1974) assumptions a TPS can be more efficient 
if the permit constraint does not bind in every state. This happens if 
demand is sufficiently low, and/or usage costs sufficiently high, that the 
unregulated equilibrium level of usage is less than the number of permits 

3 Objections to road pricing include paying for something that was previously 
free, double taxation, inequity, and system complexity. See Ecola and Light 
(2009) and Noordegraaf et al. (2014). Commercial airlines and general aviation 
have long opposed a shift from airport fees based on aircraft weight to landing 
and takeoff fees based on congestion. In theory, operators with a small share of 
flights at an airport would pay higher fees than large operators who have an 
incentive to internalize the costs of delay they impose on their own flights. Price 
discrimination of this sort is widely viewed as inequitable.  

4 An alternative is to allocate toll revenues to users directly. Kockelman and 
Kalmanje (2005) propose that revenues be redistributed monthly to all licensed 
drivers within an urban region.  

5 See Commission of the European Communities (2008) and Fukui (2010). 
Auctions are another quantity-based instrument that harnesses the price 
mechanism. Slot auctions have been implemented at congested airports in 
Europe. Ball et al. (2006) survey their advantages and disadvantages.  

6 Verhoef et al. (1997) were the first to propose the use of TPS for roads. An 
extensive literature has now developed; see Fan and Jiang (2013), Grant-Muller 
and Xu (2014), and Dogterom et al. (2017) for reviews. Most studies are 
theoretical, although laboratory and field experiments are beginning to be 
conducted; see Brands et al. (2019). 

7 Padmanabhan et al. (2010) study multiplicative demand shocks in a model 
where a profit-maximizing firm decides whether to set a fixed price or a fixed 
quantity. Shocks to the demand curve can take two forms: horizontal dilations 
that correspond to variations in the number of consumers, and vertical dilations 
that correspond to variations in willingness to pay. They show that the firm 
prefers to set price if horizontal dilations dominate, and to set quantity if ver
tical dilations dominate. 
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allows.8 Total usage with a TPS can therefore depend on the state, and 
this gives a TPS some flexibility in regulating usage. A fixed fee lacks this 
malleability because users pay the same amount regardless of demand 
and supply conditions. Second, we show that a TPS can outperform a fee 
if congestion grows with usage at an increasing rate. If so, it is important 
to prevent usage from overloading capacity. A permit constraint does 
this more reliably than a fee. Third, we extend consideration to exter
nalities other than congestion such as pollution, noise, and infrastruc
ture damage. When these additional externalities are present, regulating 
the amount of usage becomes all-the-more important, and quantity 
control using a TPS is again favoured over a fee. 

The paper is organized as follows. Section 2 reviews the basic results 
derived by Weitzman (1974) and others on prices versus quantities 
under uncertainty when, unlike with congestion, consumers do not 
directly bear the costs of market failure. Section 2 then summarizes what 
little has been written about congestible facilities. Section 3 presents the 
model, and describes how a tradable permit system operates. It explains 
how a TPS can support the first-best optimum when demand and ca
pacity are stationary, and it establishes the equivalence between a TPS 
and a congestion fee. Section 4 introduces variability in demand and 
costs, and derives the second-best fixed fee and fixed permit supply. The 
case of linear demand and cost functions considered by Weitzman 
(1974) is taken up in Section 5. Section 6 extends consideration to 
nonlinear functions. A combined fee and TPS scheme is briefly examined 
in Section 7. Extensions of the model are investigated in Section 8. 
Section 9 summarizes the main results, and identifies avenues for future 
research. 

2. Prices vs. quantities under uncertainty 

In this section we review some established results on prices vs. 
quantities under uncertainty that will be useful for interpreting and 
positioning our results. We begin with Weitzman’s (1974) classical 
study. 

Weitzman (1974) showed that price and quantity regulation are not 
equivalent under uncertainty when policy instruments are rigid.9 He 
considered a good produced by price-taking firms in a planned economy. 

Using the notation of our model, total output of the good is N, the 
marginal benefit (i.e., inverse demand) curve is pðNÞ, and the marginal 
social cost curve is MSCðNÞ. We use MSCto denote this curve to distin
guish it from the private cost curve, CðNÞ, used in our model. 
MSCincludes the full marginal social cost of production which, in 
Weitzman’s model, is borne by firms. In much of the environmental 
literature, the good is assumed to be pollution abatement and the price 
of the good corresponds to a tax.10 

The planner knows only the probability distribution of pðNÞand 
MSCðNÞwhen it makes its decisions, but firms learn the state before 
making their decisions. Under quantity control, the planner picks a 
value of N, N, and firms are obliged to produce Nregardless of the cost. 
Under price control, the planner chooses a price, p. Profit-maximizing 
price-taking firms produce output N at which p ¼ MSCðNÞ. Firms 
adjust their outputs in response to fluctuations in MSCso that, unlike 
with quantity control, total output does depend on the state. However, 
fluctuations in demand alone do not change output because they do not 
affect either por MSC. Price control and quantity control then support 
the same (second-best) output and price in all states. If demand varia
tions are uncorrelated with cost variations, only cost uncertainty is 
relevant to the choice between price and quantity control. 

Weitzman takes linear approximations to the demand and 
MSCcurves. He assumes that the slopes of the curves are constant and 
known, but the planner knows the intercept of the MSCcurve only up to a 
probability distribution. Given additive uncertainty of this sort, Weitz
man shows11 that the difference in expected social surplus between price 
control and quantity control is equal to 

ΔW ¼
σ2

cp’
2ðMSC’Þ2

þ
σ2

c

2MSC’
¼

σ2
c

2MSC’

�
1þ

p’
MSC’

�
; (1)  

where σ2
c is the variance of the intercept of the MSCcurve and ’denotes a 

derivative. Price control is superior to quantity control if 
jjp’jj < MSC’since the expression in brackets is then positive. Quantity 
control is superior to price control if p’ > MSC’.12 Price control is 
therefore superior if the demand curve is flatter than the MSCcurve, and 
quantity control is superior if the demand curve is steeper. 

Fig. 1 depicts an example with two states in which the demand curve 
is fixed, while the MSCcurve is MSCGin state G (good) and MSCBin state 
B (bad). In state G, the optimum is at point g. It can be realized either by 
setting a quota of No

Gor fixing the price at po
G. In state B, the optimum is at 

point c. It can be realized either with a quota of No
Bor a price set at po

B. If 
the quota cannot be differentiated between states, the optimal level, N, 
is between No

Band No
G. Too little output is produced in state G with a 

deadweight loss equal to area egf . Too much output is produced in state 
B with a deadweight loss of area cde. If the price cannot be differentiated 
between states, the optimal fixed price, p, is between po

Gand po
B. Too 

much output is produced in state G with a deadweight loss equal to area 
ghj. Too little output is produced in state B with a deadweight loss equal 
to area acb. 

In the example, output varies too little (i.e., not at all) with quantity 
control and too much with price control. In both states, the deadweight 
loss is greater with price control. Consistent with eqn. (1), quantity 
control is superior because the demand curve is steeper than the 
MSCcurve. The intuition is straightforward. When the MSCcurve is 
relatively flat, under price control small shifts in the cost curve induce 
large fluctuations in output. With steep demand, the fluctuations lead 
either to a serious shortage and a major loss of benefits, or a big surplus 

Fig. 1. Price and quantity controls in Weitzman’s model with variable costs.  

8 An instance of a nonbinding permit constraint occurred during the pilot 
phase of the European Union Emissions Trading System when the price of al
lowances dropped to zero (Merrill Brown et al., 2012).  

9 Rose-Ackerman (1973), Fishelson and Flatters (1975), Fishelson (1976), 
Adar and Griffin (1976), and Roberts and Spence (1976) independently 
developed some of Weitzman’s ideas. 

10 In this literature it is common to write benefits and costs as functions of the 
level of abatement rather than output. To facilitate later comparison with our 
model, we instead write them as functions of N.  
11 Weitzman (1974, eqn. (20)). 
12 Adar and Griffin (1976) derive a condition equivalent to (1) using elastic

ities of the demand and cost curves. 
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and a significant waste of resources. Under these conditions, a fixed 
quota that guarantees a given output is preferable to a fixed price.13 By 
contrast, if the demand curve is relatively flat the exact level of output is 
not crucial to consumers. And if the MSCcurve is steep, forcing pro
duction of a given amount can lead either to very high marginal social 
costs that greatly exceed the benefit, or output at a very low marginal 
social cost that falls far short of its marginal value to consumers. A fixed 
price is then superior to a fixed quantity. 

Although demand variations alone do not affect the choice between 
price and quantity control, demand variations do matter if they are 
correlated with variations in costs. Weitzman (1974) shows that with 
correlation, eqn. (1) is modified to 

ΔC ¼ΔW �
σ2

pc

MSC’
; (2)  

where σ2
pcis the covariance between demand and MSC. Positive corre

lation favours quantity control, and negative correlation favours price 
control. As Stavins (1997) explains, with price control firms respond to 
high marginal costs by reducing output. If demand is positively corre
lated with costs, consumption tends to be especially valuable when costs 
are high so that the reduction in output induced by price control is 
inappropriate. Quantity control is then more likely to be preferred. The 
opposite is true with negative correlation. 

Weitzman (1974) and most later authors assumed that under price 
control firms choose the output at which p ¼ MSCðNÞ. Laffont (1977) 
briefly considered another possibility in which consumers decide output 
by adjusting N so that p ¼ pðNÞ. If so, demand variations affect output 
whereas cost variations do not. This is just the opposite of Weitzman’s 
(1974) case. Intriguingly, Laffont (1977) shows that with additive un
certainty about benefits, the welfare ranking of price and quantity 
control is given by � ΔWin eqn. (1). Quantity control is then superior if 
the demand curve is flatter than the marginal cost curve, and price 
control is superior if the demand curve is steeper. 

The results summarized thus far apply when the demand and 
MSCcurves are linear and shift vertically. Another possibility is that the 
curves rotate about fixed intercepts on the vertical axis so that uncer
tainty is multiplicative rather than additive. Ranking price and quantity 
control is not as simple in this case. As Laffont (1977) shows, if multi
plicative uncertainty is great enough quantity control can outperform 
price control regardless of whether producers or consumers choose 
output. Ranking price and quantity control is also not as easy if demand 
and cost curves are nonlinear (Yohe, 1978). 

In summary, the literature suggests that in the face of uncertainty 
either price control or quantity control can be superior. The welfare 
ranking depends on the relative slopes of the demand and cost curves 
and on whether output under price control is decided by producers or 
consumers. Correlation between demand and costs can also affect the 
ranking. 

For at least two reasons Weitzman’s (1974) analysis is not directly 
applicable to congestible facilities and the choice between fees and a 
TPS. First, in Weitzman’s model consumers do not incur the costs of 
production. By contrast, the costs of congestion are (largely) borne by 
users rather than the general population. Congestion provides a negative 
feedback on usage that limits the costs that congestion can impose. 
Second, a TPS imposes only an upper bound on usage because not all 
permits that are issued have to be used. Some may go unused if demand 
is particularly low, or if (private) costs are particularly high. If so, the 

TPS will have no effect on usage and the price of permits will drop to 
zero.14 

As far as congestible facilities, four studies have analyzed price 
regulation versus quantity regulation under uncertainty: two on air
portion congestion and two on road congestion. Czerny (2008) studies 
airport congestion using Weitzman’s linear framework and considers 
separately cases with uncertain demand, uncertain costs, and uncertainy 
in both demand and costs. His analysis is diagrammatic, and he does not 
take into account the relationship between private congestion costs and 
external congestion costs. Czerny (2010) formalizes the analysis in 
Czerny (2008) algebraically and shows, as we do in Section 5, that with 
linear functions and additive shocks fees outperform a TPS. Czerny does 
not consider the possibility that the permit constraint does not bind. 

Many studies have examined various aspects of TPS for the use of 
roads, but only Shirmohammadi et al. (2013) and de Palma et al. (2018) 
have considered demand and capacity uncertainty. Both papers consider 
small road networks and use numerical methods to derive solutions. 
Shirmohammadi et al. (2013) show that the equivalence between TPS 
and congestion tolls breaks down with uncertainty. They consider the 
degree of volatility in permit prices, but do not undertake a welfare 
comparison of TPS and tolls. de Palma et al. (2018) consider a single 
origin and destination connected by parallel highway routes and a 
public transport service. Demand for each travel alternative is deter
mined by a mixed-logit choice model. de Palma et al. (2018) solve 
equilibrium for a large combination of parameter values. They find that 
a TPS outperforms tolls in a majority of instances although the average 
difference is not large. As they acknowledge, the complexity of their 
model makes it difficult to develop intuitive explanations for the results. 

Our paper differs from de Palma et al. (2018) in adopting a simpler 
model with homogeneous agents and a single congestible facility that 
could be a road, a Central Business District, an airport, a recreational 
area, a museum, etc.. Agents decide whether to use the facility condi
tional on the state and the fee or number of permits that are issued. Both 
fees and permits are constrained to be the same across states. We build 
on antecedent studies in allowing that the permit requirement may not 
always bind, and showing how the relative performance of a fee and TPS 
depends on the nature and magnitude of demand and cost shocks, and 
the shapes of the demand and cost functions. 

Before presenting the model it is worth commenting on three of the 
assumptions. One is that prospective users know supply and demand 
conditions when they decide whether to use a facility. Though stringent, 
this assumption is becoming more plausible as information and com
munications technology pervades everyday life. For example, drivers 
can obtain traffic information from traffic websites (e.g., waze.com), 
GPS devices, connected vehicles, mobile phones, e-mail, social media, 
and so on. Transit users can get real-time alerts from transit websites as 
well as mobile apps such as CityMapper, Transit, and Google Maps. 

The second assumption is that permit quantities or fees cannot be set 
according to current information. This might seem inconsistent with the 
first assumption since facility operators typically have better informa
tion than the general public, and may even be a source of public infor
mation. The pertinent assumption, however, is that operators cannot use 
this information to adjust permit quantities or fees on short notice. With 
the exception of dynamic pricing on some High Occupancy Toll lanes in 

13 Following Weyl (2012), imagine that the MSCcurve shifts up or down along 
the steep demand curve. The optimal equilibrium price varies widely whereas 
the optimal quantity does not, so that quantity control is more efficient. 

14 A third distinction between congestible facilities and Weitzman’s setting is 
that most travel — as well as many recreational activities, museum visits, and 
so on — takes place on networks of multiple congestible links or nodes. To 
support an efficient distribution of usage over a network using a TPS, upper 
bounds must be imposed on the flows on each link. This multi-dimensional 
complication does not arise for a global externality such as greenhouse gas 
emissions. 
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the US, real-time pricing has not been used on roads.15 One reason may 
be that the infrastructure and operating costs are still too high for it to be 
cost-effective (Levinson and Odlyzko, 2008). Another is that people 
prefer simple and predictable pricing schemes (Bonsall et al., 2007). 
Similar considerations may apply to permits which, so far, have not been 
implemented for roads, and rarely for other facilities. Transactions costs 
militate against frequently adjusting the supply of permits, and it seems 
likely that they would be distributed weekly, monthly, or quarterly 
rather than daily. 

The third assumption is that users are atomistic and disregard any 
effect they may have on congestion, permit prices, or toll levels. This 
seems realistic for roads, recreational areas, and museums that 
numerous people visit per day. In conjunction with the assumption of 
quasilinear preferences, this allows us to ignore how permits are initially 
distributed and rule out market power in tradable permits markets.16 

3. TPS and usage fees: stationary conditions 

We begin the analysis by considering a benchmark case in which 
demand and costs do not vary and are known. Supply conditions are 
defined by the cost of usage. Consistent with previous studies, we show 
that a fixed TPS and a fixed usage fee can both support a first-best 
optimum. 

In the model there is a single congestible facility or area, and a 
continuum of agents who differ only in their willingness to pay to use or 
access it. The number of agents who decide to use the facility is N.17 The 
inverse demand curve is a decreasing and differentiable function, pðNÞ. 
The cost of usage is CðNÞ. Unless noted otherwise, CðNÞis assumed to be 
strictly increasing and twice continuously differentiable. Thus, the 
marginal social cost of usage, MSCðNÞ ¼ CðNÞþ C’ðNÞN, exceeds CðNÞ. 
To assure that equilibrium usage is both positive and finite, we adopt: 

Assumption 1. The demand and cost functions are such that pð0Þ >
Cð0Þand pðbNÞ < CðbNÞfor some bN 2 ð0;∞Þ. 

Welfare is measured by total net benefits from usage which equal 
gross benefits minus total user costs: 

WðNÞ¼
Z N

0
pðnÞdn � CðNÞN: (3)  

3.1. Unregulated equilibrium and first-best optimum 

If no fee or TPS is implemented, equilibrium usage, Nn, solves: 

pðNnÞ¼CðNnÞ; (4)  

where superscript n denotes the no-intervention or unregulated regime. 
Given Assumption 1, eqn. (4) has a unique and strictly positive solution 
for Nn. 

The first-best optimum (FBO), denoted by superscript o, maximizes 
net benefits in (3). The first-order condition determining optimal usage, 
No, solves: 

pðNoÞ¼CðNoÞþC’ðNoÞNo¼MSCðNoÞ: (5)  

The second-order condition is satisfied if C’’ðNoÞNo=C’ðNoÞ > � 2(i.e., if 
the usage cost function is not too concave). Given Assumption 1, it fol
lows that 0 < No < Nn < bN. 

We now consider price and quantity control instruments, beginning 
with a usage fee since it is more familiar in the literature on congestion 
management. 

3.2. Optimal usage fee 

Let Nfdenote equilibrium usage when a fee f is levied. The equilib
rium condition determining Nf is 

p
�
Nf �¼C

�
Nf �þ f : (6) 

Comparing eqns. (5) and (6), it is clear that the FBO can be realized 
by following the standard Pigouvian prescription and charging a fee 
equal to the marginal external cost (MEC) of usage in the FBO: 

f o¼C’ðNoÞNo¼MECðNoÞ: (7) 

The fee in eqn. (7) is unique as long as CðNÞis not too concave. If it is 
highly concave, the inverse demand curve pðNÞcan intersect the 
MSCcurve more than once. It is then possible (albeit seemingly unlikely) 
that welfare is maximized at two or more distinct levels of usage sup
ported by different fees. If so, the optimal fee is not unique. 

3.3. Optimal tradable permit scheme 

A TPS is defined by the total number of permits or credits allocated to 
potential users, Y, and the number of permits required per use, y. With 
only one congestible facility, and no distinction between peak and off- 
peak periods, y can be normalized to 1 so that the maximum 
permitted usage is Y. On any given day, once permits have been 
distributed a market opens and agents can buy or sell permits.18 An 
equilibrium is assumed to be reached in which the market clears at a 
price q. Agents are price takers and treat q as given. The full cost of usage 
is CðNÞþ q. Let Ncdenote usage with the TPS. The equilibrium condition 
for Ncis 

pðNcÞ¼CðNcÞ þ q: (8)  

If unregulated equilibrium usage exceeds the maximum permitted (i.e., 
Nn > Y), then q > 0. If Nn � Y, then q ¼ 0. To support the FBO, Y must 
be chosen so that Nc ¼ No. Since No < Nn, the permit constraint must 
bind (Nc ¼ Y), and permits must trade at a positive price (q > 0). 
Comparing eqns. (8) and (5) it is clear that q ¼ C’ðNoÞNo. Equilibrium 
with the TPS is thus defined by two conditions: 

Y ¼No; (9)  

q¼C’ðNoÞNo: (10) 

As explained above regarding the fee in eqn. (7), if CðNÞis highly 
concave the optimal level of usage may not be unique. If so, the optimal 
Y and q will not be unique either. 

15 Elsewhere, toll schedules are adjusted periodically. For example, on SR-91 
in Orange County, California, tolls are adjusted every six months to maintain 
free-flowing conditions on the Express Lanes (https://www.octa.net/91- 
Express-Lanes/Toll-Policies/, accessed June 1, 2019). In Singapore, toll 
schedules are adjusted quarterly, and during June and December school holi
days, to maintain target speeds on expressways and arterials (https://www.lta. 
gov.sg/content/ltaweb/en/roads-and-motoring/managing-traffic-and-conges 
tion/electronic-road-pricing-erp.html, accessed June 1, 2019).  
16 Nonatomistic users do exist. Transportation examples include commercial 

airlines and rail companies, major freight shippers, and even major employers 
such as government departments. Similarly, large tour companies may generate 
a substantial fraction of traffic at tourist sites and major recreational areas. He 
et al. (2013) derive equilibrium conditions for a TPS on a network with non
atomistic users.  
17 A notational glossary is provided in the appendix. We do not model agents’ 

decisions after they have decided to use the facility such as time of use, duration 
of stay, route, speed of movement, etc.. Yoshimura et al. (2014, 2017) analyze 
empirically these dimensions of behavior for museum visitors. We also assume 
that users behave in the same way whether access is unregulated, rationed by 
price, or rationed by quantity. More et al. (1996) find empirical support for this 
assumption in the case of campground usage. 

18 Agents will trade unless the number of permits they are initially allocated 
happens to be commensurate with their individual demands. Individual allo
cations and willingness to pay can both vary from person to person. 
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3.4. Equivalence of a TPS and usage fee 

It follows from eqns. (7) and (10) that q ¼ fo: the equilibrium price of 
a permit matches the Pigouvian fee. It also follows that qY ¼ foNo: the 
total market value of permits matches total usage fee revenues. These 
results are summarized as: 

Proposition 1. If demand and cost curves are stationary, the FBO can be 
decentralized using either a fee or a TPS. The equilibrium cost of a permit 
matches the fee, and the total market value of permits equals total fee 
revenues. 

Proposition 1 establishes that a TPS and a fee can both support the 
FBO for a single facility. Yang and Wang (2011) show that the result also 
holds on a general network with multiple origins, destinations, and 
links. 

4. TPS and usage fees: variable conditions 

We now turn to the setting of interest in which demand, usage costs, 
or both, vary over time. Variations are commonplace in the case of road 
travel. Road capacity is reduced by crashes, slippery conditions, poor 
visibility, and roadwork. Congestion-free travel time is increased by 
these factors, as well as by forced traffic diversions to bypass routes that 
are slower, or less direct, than the preferred route. Costs can vary pre
dictably over time with seasonal variations in fuel prices and vehicle fuel 
consumption (e.g., higher in very cold weather). Demand fluctuations 
are also common. Predictable demand fluctuations occur daily, weekly, 
monthly, and seasonally. Unpredictable fluctuations occur due to 
inclement weather, special events, transit strikes, and other shocks. 
Airport congestion is similarly affected by bad weather and demand 
fluctuations. Demand and capacity variations also occur at outdoor 
recreational facilities due to weather. Good weather can draw hordes of 
users. Bad weather can keep people away, while also impairing or pre
venting usage of such facilities as golf courses, ski slopes, hiking trails, 
lakeside resorts, beaches and so on. 

As in Weitzman’s (1974) model, the planner or regulator cannot 
condition the usage fee or permit allocation on the state. But agents are 
assumed to learn the state before deciding whether to use the facility. 
Agents are assumed to be risk neutral so that it does not matter whether 
variations are predictable or unpredictable. Only the relative fre
quencies of states matter. Consequently, we will refer to conditions as 
“variable” rather than “uncertain”. 

Let Ωdenote the set of possible states,19 and ω 2 Ωa particular state. 
Let pωð⋅Þdenote the inverse demand function in state ω, Cωð⋅Þthe cost 
function in state ω, and Nωusage in state ω. Finally, let E denote the 
expectations operator over states. Expected welfare, EW, is given by an 
extension of (3): 

EW ¼E
�Z Nω

0
pωðnÞdn � CωðNωÞNω

�

: (11)  

In any state ω, unregulated equilibrium usage, Nn
ω, and FBO usage, No

ω, 
can be solved as in Section 3. If the fee and TPS were completely flexible, 
the FBO could be supported either with a fee fo

ω ¼ C’ðNo
ωÞN

o
ωor a permit 

allocation Yω ¼ No
ω. However, by assumption neither the fee nor the 

permit allocation can be conditioned on the state. Thus, a single value of 
the fee, f, must be chosen for the pricing instrument. Similarly, a single 
permit allocation, Y, must be chosen for the quantity instrument. As in 
Section 3, we first consider the fee and then the TPS. 

4.1. Usage control with a fee 

With a fee, equilibrium usage in state ω, Nf
ω, is determined by the 

condition 

pω
�
Nf

ω
�
¼Cω

�
Nf

ω
�
þ f : (12)  

The regulator chooses f to maximize expected welfare. Since the term in 
braces in (11) is continuously differentiable, the derivative and expec
tations operators can be permuted. The first-order condition for the 
optimal fee, f�, is 

E
�
�
pω
�
Nf

ω
�
� Cω

�
Nf

ω
�
� Cω’

�
Nf

ω
�
Nf

ω
� ∂Nf

ω
∂f

��
�
�
�
f �
¼ 0:

Using (12), this condition can be written E
�

ðf� � Cω’ðNf
ωÞN

f
ωÞ

∂Nf
ω

∂f

��
�
�
�
f�
¼

0, or 

f � ¼
E
�

Cω’
�
Nf

ω
�
Nf

ω
∂Nf

ω
∂f

��
�
�
�
f �

E
�

∂Nf
ω

∂f

��
�
�
�
f �

¼E
�

Cω’
�
Nf

ω
�
Nf

ω
�
�
�
�
�
f �

þ

Cov
�

Cω’
�
Nf

ω
�
Nf

ω;
∂Nf

ω
∂f

��
�
�
�
f �

E
�

∂Nf
ω

∂f

��
�
�
�

f �

; (13)  

where Covdenotes covariance. According to the first formula in (13), the 
optimal fee is a weighted average over states of the marginal external 
cost (mec) of congestion in each state, Cω’ðNf

ωÞN
f
ω, with weights pro

portional to the probability of each state and the fee sensitivity of de
mand in each state, ∂Nf

ω=∂f .20 The second formula in (13) shows that the 
optimal fee exceeds the average mec if the mec is positively correlated 
with demand sensitivity. Conversely, the fee is less than the mec if the 
correlation is negative. Unless Nf

ω ¼ No
ω, Cω’ðNf

ωÞN
f
ωis not equal to the 

FBO fee in state ω, Cω’ðNo
ωÞN

o
ω. For this reason, we will call 

Cω’ðNf
ωÞN

f
ωthe first-best-formula fee. 

Define fo
�Minωfo

ωas the smallest FBO fee of all states, and 

fo
� Maxωfo

ωas the largest FBO fee. If fo
<fo, the first-best fee varies 

across states. It follows (see the Appendix) that f� 2 ðfo
; fo
Þ. 

Applying the implicit function theorem to (12) one gets ∂Nf
ω=∂f ¼

ðpω’ðNf
ωÞ � Cω’ðNf

ωÞÞ
� 1
< 0. The weight in state ω is larger the flatter are 

the usage cost and inverse demand functions because usage is then more 
sensitive to costs. Substituting this equation into (13), and combining 
the formula with the bounds on the optimal fee, leads to: 

Proposition 2. Assume demand and cost functions are variable and 
satisfy Assumption 1. The optimal fixed fee, f�, solves 

f � ¼
E
n

Cω’
�
Nf

ω
�
Nf

ω
�
Cω’
�
Nf

ω
�
� pω’

�
Nf

ω
��� 1

o��
�
�
f �

E
n�

Cω’
�
Nf

ω
�
� pω’

�
Nf

ω
��� 1

o��
�
�
f �

: (14)  

If the FBO fee varies across states, the optimal fixed fee lies strictly 
within the range of the FBO fee. 

As noted in Section 3, if the cost curve is highly concave the optimal 
fee may not be unique when demand and cost conditions are stationary. 
The same is clearly true when conditions are variable. Furthermore, with 
variable conditions the optimal fee can be nonunique even if the cost 
function is convex. To see this, write the first-order condition for the fee 

19 Set Ωcan be continuous or discrete. 

20 Equation (13) is analogous to equation (7) in de Palma and Lindsey (1998), 
who compare state-independent congestion pricing with state-dependent or 
responsive pricing. 
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as: 

E
�

f � � Cω’
�
Nf

ω
�
Nf

ω

pω’
�
Nf

ω
�
� Cω’

�
Nf

ω
�

��
�
�
�

f �
¼ 0 (15)  

Suppose eqn. (15) is satisfied with a fee f�1. Raising the fee above 
f�1increases the numerator in each state. Since the denominators are all 
negative, this tends to make the LHS increasingly negative. However, 
the denominators also change. If the inverse demand curve or cost curve 
in a state becomes flatter, the denominator shrinks in magnitude and the 
weight on that state increases. If this trend is concentrated in states 
where f� > Cω’ðNf

ωÞN
f
ω, the LHS can change from negative to positive, 

and another local optimum can be reached. An example is given in the 
Appendix.21 

4.2. Usage control with a TPS 

Let Nc
ωdenote equilibrium usage in state ω with the TPS. As in the 

stationary setting of Section 3, Y permits are allocated to prospective 
users. This puts an upper bound of Y on usage in each state: 

Nc
ω� Y; ​ ω 2 Ω: (16)  

The TPS operates in the same way as in the stationary setting. In each 
state, permits are traded freely and the price adjusts so that constraint 
(16) is satisfied. Let qωdenote the equilibrium permit price in state ω. 
The full cost of usage is CωðNc

ωÞþ qω, and the equilibrium condition 
determining Nc

ωis 

pω
�
Nc

ω
�
¼Cω

�
Nc

ω
�
þ qω: (17)  

In good states (i.e., in which pωð⋅Þis relatively high, and/or Cωð⋅Þis 
relatively low), the permit constraint (16) binds, qω > 0, and Nc

ω ¼ Y. If 
any states are sufficiently bad, constraint (16) does not bind, qω ¼ 0, 
and Nc

ω < Y.22 The permit market acts to adjust the monetary price of 
usage according to demand and cost conditions. This contrasts with the 
price control scheme in which the monetary price (the fee) is fixed. 

Let ΩCdenote the set of states in which the permit constraint binds, 
and ΩN � Ω � ΩCthe complementary set (possibly empty) in which the 

constraint does not bind.23 It follows that 

∂Nc
ω

∂Y
¼

�
1 ​ for ​ ω 2 ΩC
0 ​ for ​ ω 2 ΩN

: (18)  

The regulator chooses Y to maximize expected welfare given in (11). The 
first-order condition for the optimal Y, Y�, is 

E
�
�
pω
�
Nc

ω
�
� Cω

�
Nc

ω
�
� Cω’

�
Nc

ω
�
Nc

ω
� ∂Nc

ω
∂Y

��
�
�
�
Y�
¼ 0:

Using (17) and (18), this condition reduces to 

Eω2ΩCfqωgjY� � Eω2ΩC

�
Cω’
�
Nc

ω
�
Nc

ω
�
�
�
�
�
Y�
¼ 0: (19) 

Similar to the fee, the optimal permit allocation can be bounded 
above and below. Define No �MinwNo

ωas the lowest FBO usage level of all 
states, and No

� MaxwNo
ωas the highest level. It follows that Y� 2 ½No;No

�: 
the optimal permit allocation lies within the range of the FBO usage 
levels. To see why, note that if Y < No, welfare in every state could be 
increased by marginally increasing Y. Similarly, if Y > No, welfare in 
states ω with Nn

ω > Nocould be increased by reducing Y to Nowithout 
reducing welfare in other states. 

Combining these bounds on the optimal permit allocation with eqn. 
(19) leads to: 

Proposition 3. Assume demand and cost functions are variable and 
satisfy Assumption 1. The optimal permit allocation, Y�, satisfies 

Eω2ΩCfqωgjY� ¼Eω2ΩC

�
Cω’
�
Nc

ω
�
Nc

ω
�
jY� : (20)  

Y�lies within the range of FBO usage levels of all states. Unlike Propo
sition 2 for the fee, usage with the TPS does not necessarily lie strictly 
within the range of first-best usage levels. According to (20), Y�is chosen 
so that the expected equilibrium permit price equals the expected 
marginal external congestion cost. Expectations are only taken over 
constrained states. Usage conditions in unconstrained states do not 
affect Y�because the price of permits is zero in these states and the 
choice of Y�does not affect usage. By contrast, the optimal fee (14) does 
depend on usage conditions in all states. If the permit constraint does not 
bind in some states, total usage is not completely rigid with a TPS. As 
will be shown, this flexibility can tip the balance in favour of a TPS. 

Two complications arise in applying formula (20). First, the partition 
of states into ΩCand ΩNis not exogenous but depends on Y. Second, if 
states are discrete, the first-order conditions are discontinuous functions 
of Y, and (20) defines only local optima. Similar to the case with the fee, 
the optimum Y may not be unique. The two complications are illustrated 
in Fig. 2 using an example with a stationary demand curve and two cost 
curves corresponding to good (G) and bad (B) usage conditions. The 
unregulated equilibrium occurs at the point where the demand and cost 
curves intersect. In state G it is at point g, and in state B at point f. The 
FBO is found where the demand curve and MSCcurve intersect. In state G 
it is at point e, and in state B at point a. 

According to Proposition 3, Y� 2 ½No
B; N

o
G�. Setting Y ¼ No

Gsupports 
optimal usage in state G. As Fig. 2 is drawn, No

B < No
G < Nn

B. Setting Y ¼
No

Gthus curtails usage in state B too, but not enough to reach No
B. 

Reducing Y slightly below No
Greduces overusage in state B further with 

only a second-order efficiency loss in state G. However, as Y approaches 
No

Bthe marginal benefit from reducing overusage in state B declines to
ward zero while the marginal deadweight loss from restricting usage in 
state G mounts. Hence, given the cost curves in Fig. 2, Y� 2 ðNo

B;N
o
GÞ, as 

shown. Relative to the FBO, the deadweight loss in state G from 

Fig. 2. Allocative inefficiency of permits.  

21 The example features linear functions, and is easier to follow after reading 
Section 5.  
22 If Nn

ω ¼ Y, then Nc
ω ¼ Yand qw ¼ 0. 

23 Since function Cð⋅Þis strictly increasing, usage is congested in all states 
including ΩN . 
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underusage is measured by the shaded area cedbelow the inverse de
mand curve, p, and above the marginal social cost curve, MSCG. Simi
larly, the deadweight loss in state B from overusage corresponds to the 
area abc. 

Suppose that the cost curves in the two states differ more sharply 
than shown in Fig. 2 so that Nn

B < No
G. Reducing Y slightly below No

Gis 
now counterproductive because it reduces usage in state G below the 
FBO level without affecting usage in state B. Only when Y drops below 
Nn

Bdoes the permit constraint bind in both states. If the gap between 
Nn

Band No
Gis small, and state B is likely enough, restricting usage in state 

B is optimal, and Y� 2 ðNo
B; No

GÞ, again. If the gap is large, it is not 
worthwhile to set a tight permit constraint that binds in state B, and 
Y� ¼No

G. If the gap is just the right size, the two options are equally good 
and the solution is not unique. The optimal permit allocation thus de
pends, inter alia, on the degree of variation in costs and the probabilities 
of the states. 

5. TPS vs. fees: linear functions 

We are now ready to tackle the main question addressed in the paper: 
are prices or quantities more efficient at controlling usage of a con
gestible facility when conditions vary, and controls cannot depend on 
the state? To facilitate comparison with the classical results reviewed in 
Section 2, we assume in this section that the inverse demand and cost 
curves in each state are linear functions of N: 

pωðNÞ¼ aω � bωN; (21)  

CωðNÞ¼ cω þ dωN;

where parameters aω, bω, cω, and dωare all strictly positive. Parameter 
dωgoverns the rate at which the facility becomes congested, and will be 
called the congestion coefficient. Equilibrium prices, quantities, and 
welfare depend only on the difference between the intercepts of the 
inverse demand and cost curves, Aω � aω � cω. Unless indicated other
wise, we assume Aω > 0. If state ω is realized, and usage is N, welfare 
(see eqn. (3)) is 

Wω¼AωN �
bω þ 2dω

2
N2: (22) 

From eqns. (4) and (5), the unregulated equilibrium and FBO usage 
levels in state ω are 

Nn
ω¼

Aω

bω þ dω
; ​ ​ No

ω ¼
Aω

bω þ 2dω
: (23)  

From eqn. (3), the corresponding welfare levels are 

Wn
ω¼

bωA2
ω

2ðbω þ dωÞ
2 ; ​ ​ Wo

ω¼
A2

ω
2ðbω þ 2dωÞ

: (24) 

The FBO fee is 

f o
ω¼

dωAω

bω þ 2dω
; (25)  

and the welfare difference between the unregulated equilibrium and the 
FBO is 

Wo
ω � Wn

ω¼
d2

ωA2
ω

2ðbω þ 2dωÞðbω þ dωÞ
2: (26)  

The welfare difference is an increasing function of the congestion co
efficient dw. It is a quadratic function of Aω, and hence of the level of 
usage in either the unregulated equilibrium or the FBO as per (23). The 
welfare gain from implementing the FBO fee, the fixed fee, or the TPS all 
depend on the probability distributions of parameters aω, bω, cω, and dω. 
We consider two cases. The first is Weitzman’s case of additive shocks in 
which the intercept parameters aωand cωvary, but the slope parameters 

bωand dωare constants. In the second case, bωand dωare variable. We call 
this case multiplicative shocks because the size of the shock is propor
tional to usage. 

5.1. Additive shocks 

With additive shocks, aωand cωare variable, and hence so is Aω. 
Define A � EfAωg, and let σ2

Adenote the variance of A. The optimal fixed 
fee works out to 

f � ¼
dA

bþ 2d
; (27)  

and expected welfare with f�is 

EWf *¼
A2

2ðbþ 2dÞ
þ

b
2ðbþ dÞ2

σ2
A: (28)  

To analyze the TPS, it is necessary to distinguish between cases in which 
the permit constraint always binds and cases in which it does not always 
bind. 

5.1.1. Case 1: Permit constraint always binds 
Suppose the permit constraint binds in all states so that set ΩNis 

empty.24 Given (17) and (19), the optimal permit allocation is 

Y� ¼
A

bþ 2d
; (29)  

and expected welfare is 

EWc* ¼
A2

2ðbþ 2dÞ
: (30)  

Given eqns. (28) and (30), the relative advantage of the fee over the TPS 
is 

Δ�EWf * � EWc* ¼
b

2ðbþ dÞ2
σ2

A > 0: (31) 

Expected welfare with the fee always exceeds expected welfare with the 
TPS. This result is formalized as: 

Theorem 1. Assume that demand and cost curves are linear, and shocks 
are additive. If the permit constraint always binds, a fee outperforms a TPS. 

The ranking in Theorem 1 holds whether or not the demand and cost 
curves are correlated because expected welfare in eqns. (28) and (30) 
depends only on the distribution of the difference in their intercepts, 
Aw ¼ aω � cω. Note from eqns. (27) and (29) that f� ¼ dY�: the optimal 
fixed fee equals the marginal external cost of congestion evaluated at the 
optimal permit allocation quantity. In this respect, the two instruments 
target the same amount of usage although, due to fluctuations in Aw, 
they support different outcomes. 

Theorem 1 differs from the results of Weitzman (1974) and Laffont 
(1977). Weitzman showed that if firms choose output under price con
trol, price control differs from quantity control only if costs are variable. 
Price control dominates quantity control if the demand curve is flatter 
than the MSCcurve. Laffont showed that if consumers choose output 
under price control, only demand variations matter. Price control 
dominates quantity control if the demand curve is steeper than the 
MSCcurve. By contrast, Theorem 1 establishes that price control (a fee) 
dominates quantity control (a TPS) with either cost or demand vari
ability, and regardless of the relative slopes of the demand and cost (or 
MSC) curves. 

24 In the Appendix we show that usage with the optimal fee is then always 
positive so that eqns. (13) and (14) apply. 
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Theorem 1 differs from Weitzman (1974) and Laffont (1977) for two 
reasons. First, users of a congestible facility are both consumers and 
producers since they incur the costs of usage, not firms. Laffont’s (1977) 
distinction between producers and consumers is thus absent. Second and 
relatedly, congestion has a negative feedback effect on usage. When 
costs rise, users curtail their usage somewhat without intervention. 
Indeed, users in aggregate bear the full costs of congestion, and a market 
failure exists only because individual users ignore the portion of the 
costs they generate that are external and imposed on others. The fee is 
designed to target the externality directly, and if the externality is 
similar across states a fixed fee can perform nearly as well as the FBO fee. 
A fixed quota lacks this sensitivity.25 

Fig. 3 illustrates Theorem 1 by presenting an example in which the 
demand and MSCcurves have the same slopes as in Fig. 1.26 In state G, 
optimal usage is No

Gand the first-best fee is fo
G. In state B, the corre

sponding values are No
Band fo

B. The fee is slightly smaller in state B than 
state G because usage is lower in state B and (with parallel cost curves) 
the marginal external cost is lower too. As per eqn. (14), the optimal 

fixed fee, f�, is a weighted average of the first-best-formula fees f f
Gand f f

B. 
Since f� 2 ðfo

B; f
o
GÞ, the fixed fee supports excessive usage in state G and 

insufficient usage in state B. The respective deadweight losses in the two 
states are given by areas hjkand acb. The permit allocation Y�is set at a 
level intermediate between No

Band No
G. The welfare loss is area ehgin 

state G, and area cdein state B. The qualitative pattern of losses in Fig. 3 
is the same as in Fig. 1, but in both states the losses are much smaller 
with the fee than the TPS. Thus, in contrast to Fig. 1, the fee is superior. 
Indeed, since the marginal external cost of congestion is similar in the 
two states, so are the Pigouvian fees. The fixed fee is then near-optimal 
for both states. 

Czerny (2010) derives a variant of Theorem 1 in the context of 
airport congestion for the case where demand is uncertain.27 He shows 
how the result can be derived diagrammatically from Weitzman’s 
approach by interpreting the demand curve and cost curve in an 
appropriate way. He first notes that the net private benefit from usage is 
measured by the inverse demand minus the user cost: pðNÞ � CðNÞ. The 
marginal external cost of usage is the marginal social cost minus user 
cost: MECðNÞ ¼MSCðNÞ � CðNÞ. Given (21) and additive shocks, the net 
benefit and MECcurves are Aω � ðb þ dÞNand dN, respectively. The net 
benefit curve has an absolute slope of bþ d, and the MECcurve has an 
absolute slope of d. Since the net benefit curve is steeper, price control 
dominates quantity control. Theorem 1 generalizes Czerny’s result by 
showing that, if the TPS always binds, price control remains unambig
uously superior to quantity control when the intercept parameter c of the 
cost function is variable, and regardless of how it is correlated with the 
demand parameter a. 

The example in Fig. 3 can be depicted using the net benefit and 
MECcurves as shown in Fig. 4. With no regulation, equilibrium usage 
occurs where the net benefits are zero. Optimal usage is determined 
where the net benefit curves intersect the MECcurve. The deadweight 
loss from the fixed fee is small because the MECcurve does not vary 
much over the range of optimal usage. 

5.1.2. Case 2: Permit constraint does not always bind 
If the permit constraint does not bind in some states, set ΩNis not 

empty. Given eqns. (22) and (24), expected welfare is 

EWc¼Eω2ΩCfAωgY � EfΩCg
bþ 2d

2
Y2 þ

b
2ðbþ dÞ2

Eω2ΩN

�
A2

ω
�
; (32)  

where EfΩCgis the probability that the permit binds. The optimal Y is 
derived by maximizing eqn. (32). In contrast to the case in which the 
permit constraint always binds, the TPS can outperform a fee: 

Theorem 2. Assume that demand and cost curves are linear, and shocks 
are additive. If the permit constraint does not always bind, a TPS can 
outperform a fee. 

We prove Theorem 2 using an example. Suppose A has a two-point 
distribution: A ¼ ABwith probability ℘, and A ¼ AGwith probability 
1 � ℘where AG > AB > 0. The TPS outperforms the fee when28 

AB

AG
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ℘
p

� ð1 � ℘Þ
℘

: (33) 

Condition (33) is satisfied when the states differ sufficiently. Since 
the maximum value of the right-hand side is 0.5 (reached in the limit as 

Fig. 3. Additive shocks: inverse demand representation.  

Fig. 4. Additive shocks: net demand representation.  

25 As Yohe (1978) notes, quantity constraints also lack this sensitivity in 
Weitzman’s setting.  
26 To make Fig. 3 easier to read, curves CGðNÞand CBðNÞare positioned further 

apart than in Fig. 1. 

27 See his Proposition 1. Czerny does not include an intercept parameter in the 
cost function so that cω ¼ 0in eqn. (21). Thus, he does not explicitly consider 
additive cost shocks although, as shown here, his results continue to hold if cost 
shocks can occur.  
28 See the Appendix for details. In order for usage in state B to be positive with 

the fee, parameter values must also satisfy AB=AG > ℘d=ðb þ ð1 þ ℘ÞdÞ. This 
condition is always satisfied when b is large enough. If this condition does not 
hold, both the fee and the TPS should be optimized for state G. 
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℘→0), the TPS can outperform the fee only when AB= AG < 0:5. When 
(33) is satisfied, it is better with the TPS to ignore state B and support the 
FBO in state G. As explained in discussing Fig. 2, the welfare gain from 
improving usage in state G dominates the loss from doing nothing in 
state B. The fee is less efficient than the TPS because it does not 
discriminate between the two states despite their large differences. 
Condition (33) is notable in that it does not depend on parameters b and 
d, and therefore does not depend on the relative slopes of the demand 
and cost curves. This provides another contrast with Weitzman’s 
setting.29 

5.2. Multiplicative shocks 

Suppose now that the intercept parameters aωand cωare constants, 
while the slope parameters bωand dωare variable so that shocks are 
multiplicative.30 Multiplicative cost shocks are a natural assumption if 
capacity is variable because congestion costs are often assumed to 
depend on the ratio of usage to capacity (and thus be homogeneous of 
degree zero).31 Multiplicative demand shocks occur if the number of 
agents with a given reservation price varies across states by the same 
proportion at all reservation-price levels. 

Applying eqn. (24), expected welfare in the unregulated and FBO 
regimes with multiplicative shocks is: 

EWn¼
A2

2
E
�

bω

ðbω þ dωÞ
2

�

; ​ ​ EWo¼
A2

2
E
�

1
bω þ 2dω

�

: (34)  

If a fee f is levied, usage is Nf
ω ¼ ðA � fÞ=ðbω þ dωÞ, and expected welfare 

is 

EWf ¼E
�

1
bω þ dω

AðA � f Þ �
bω þ 2dω

2ðbω þ dωÞ
2ðA � f Þ2

�

:

From the first-order condition ∂EWf=∂f ¼ 0, the optimal fixed fee is 

f � ¼A
E
�

dw
ðbωþdωÞ

2

�

E
�

bωþ2dω
ðbωþdωÞ

2

�:

Usage with the optimal fixed fee is strictly positive in all states. Expected 
welfare is 

EWf *¼
A2

2

�

E
�

1
bωþdω

��2

E
�

bωþ2dω
ðbωþdωÞ

2

� : (35)  

With multiplicative shocks, demand and cost shocks can no longer be 
treated jointly using a composite parameter such as Aωfor additive 
shocks. To see why, note that in Fig. 4 a shock to the demand parameter 
b affects only the net benefit curve whereas a shock to the congestion 
coefficient d affects both the net benefit curve and the MECcurve. 

5.2.1. Multiplicative cost shocks 
If only multiplicative cost shocks occur (i.e., only the congestion 

coefficient d is variable), a fee outperforms a TPS. This result is proved in 
the Appendix and stated as: 

Theorem 3. Assume that demand and cost curves are linear, and only the 
congestion coefficient is variable. Then a fee outperforms a TPS. 

Theorem 3 is a counterpart to Theorem 1 which applies for additive 
demand and cost shocks. Theorem 3 is more limited in that it only ap
plies to cost shocks. However, Theorem 3 is less restrictive in that the 
permit constraint does not have to bind. 

To see why a fee is superior, note that a shock to the congestion 
coefficient d affects both the net benefit curve and the MECcurve. If 
d increases, the net benefit curve rotates clockwise downwards while the 
MECcurve rotates counterclockwise upwards. Both movements reduce 
optimal usage. The range of optimal usage can vary substantially which 
militates against a fixed permit quantity. By contrast, the downward 
shift in the net benefit curve reduces the optimal fee whereas the upward 
shift in the MECcurve increases it. The net effect on the fee is muted so 
that a fixed fee performs relatively well. Consistent with eqn. (2) in 
Weitzman (1974), negative correlation between the demand and cost 
curves works in favour of price control. 

5.2.2. Multiplicative demand shocks 
With multiplicative demand shocks it is again possible to derive 

conditions such that a fee is welfare superior to a TPS. The conditions are 
more restrictive than for multiplicative cost shocks in that the permit 
constraint must always bind. However, the conditions are less restrictive 
in that additive shocks to both demand and costs can also occur. We 
formalize this result as: 

Theorem 4. Assume that demand and cost curves are linear, the conges
tion coefficient d is constant, and the permit constraint always binds. Then, 
with any combination of multiplicative demand shocks and additive demand 
or cost shocks, a fee outperforms a TPS. 

Theorem 4 is proved in the Appendix. The theorem is significant in 
two respects. First, since it encompasses not only additive demand and 
cost shocks but also multiplicative demand shocks it generalizes Theo
rem 1.32 The joint probability distribution of parameters a, b, and c is 
unrestricted so that Theorem 4 covers various types of shocks. In 
particular, it covers demand shocks that affect the willingness to pay of 
all users by the same multiplicative factor so that the demand curve 
rotates about a fixed intercept on the horizontal (quantity) axis.33 Sec
ond, the proof of Theorem 4 entails showing that given any permit 
allocation Y, the fixed fee bf ¼ dYsupports a more efficient usage level 
than the TPS in every state. In particular, the fixed fee bf ¼
dY�outperforms the optimal TPS not only in terms of expected welfare, 
but in every possible state. The fact that a suboptimal fee Pareto dom
inates the optimal TPS provides a clear sense that the fee is superior.34 

Theorem 4 does require that the optimal permit constraint always 

29 Goodkind and Coggins (2015) also study the possibility of corner solutions 
in Weitzman’s model. They consider a polluting industry for which corner so
lutions arise if there is either no abatement or complete abatement. Interest
ingly, they find — contrary to the result here — that corner solutions favour 
price control over quantity control.  
30 Adar and Griffin (1976) consider multiplicative uncertainty in a theoretical 

pollution-control model. Watson and Ridker (1984) assume multiplicative un
certainty in an empirical study of air and water pollution control, and Hoel and 
Karp (2001) do likewise in a study of stock pollutants.  
31 If the cost function is linear, it takes the form C ¼ cþ kN= s, where s is 

capacity and k is a positive constant. Variations in capacity then translate to 
variations in the congestion coefficient d in equation (21). 

32 It also generalizes Czerny (2010) by extending consideration to both addi
tive cost shocks and multiplicative demand shocks, as well as recognizing that 
the permit constraint must bind.  
33 The ratio a=bis then the same in all states. This type of shock corresponds to 

vertical dilations of the demand curve in Padmanabhan et al. (2010). In 
contrast to Theorem 4, they show that a profit-maximizing firm prefers to set 
quantity rather than price. Indeed, if production is costless the 
profit-maximizing quantity depends only on a=band hence is the same in all 
states.  
34 Formulas for the optimal f �and Y�are given in the Appendix. Unlike with 

eqns. (27) and (29) for additive shocks, it is not generally true that f � ¼ dY�so 
that the optimal fee does not target the same output as the permit. Also, unlike 
the fee bf , the optimal fee f�does not necessarily yield a higher welfare than the 
TPS in every state. 
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bind. Parameters a, b, and c thus cannot vary too much. If they do 
fluctuate a lot, so that the constraint does not always bind, a TPS can 
outperform a fee. This is demonstrated in the Appendix using an 
example similar to that used to prove Theorem 2. 

5.2.3. Multiplicative demand and cost shocks 
If multiplicative demand and cost shocks both occur, the TPS and fee 

cannot be ranked in general. To see this, suppose that A is constant and 
the permit constraint always binds. The optimal permit allocation is 

Y� ¼
A

Efbω þ 2dωg
; (36)  

and expected welfare is 

EWc* ¼
A2

2Efbω þ 2dωg
: (37) 

Given eqns. (35) and (37), 

EWf * � EWc*¼
s
�

E
�

1
bω þ dω

��2

Efbωþ 2dωg � E
�

bω þ 2dω

ðbω þ dωÞ
2

�

; (38)  

where ¼s means has the same sign as. Introducing the composite variables 
xω � bω þ dωand yω � bωþ 2dω, eqn. (38) can be written 

EWf * � EWc*¼
s
�

E
�

1
xω

��2

Efyωg � E
�

yω

x2
ω

�

: (39)  

Suppose parameters b and d are perfectly negatively correlated, and vary 
such that variable yωis constant. Only variable x then depends on the 
state, and it follows from Jensen’s inequality that (39) is negative. A TPS 
is then welfare-superior to a fee. If parameters b and d are negatively 
correlated, demand is high when costs are high, and vice versa.35 

Optimal usage is then insensitive to the state, and a TPS performs well. 
This is consistent with eqn. (2) and Stavins’ (1997) result that positive 
correlation between demand and costs favours quantity control. 

5.3. Additive and multiplicative cost shocks 

Theorems 3 and 4 establish that, under relatively general conditions, 
with either additive or multiplicative cost shocks a fee is welfare- 
superior to a TPS. This is no longer true if both types of cost shocks 

occur. Consider the example in Fig. 5 featuring two states, G and B. The 
cost curve in state B has a larger intercept (c) than the cost curve in state 
G, but a lower slope (d) so that it features a positive additive shock and a 
negative multiplicative shock.36 The marginal social cost of usage is 
lower in state G when usage is light, but higher when usage is heavy. The 
demand curve crosses the MSCcurves where they intersect. Conse
quently, FBO usage is the same in the two states and it can be supported 
with a TPS by setting Y� ¼ No

G ¼ No
B. By contrast, a fixed fee cannot 

support the FBO because the FBO fee is lower in state B than state G. In 
this example, the net demand curve and marginal external cost curve are 
positively correlated. Positive correlation works in favour of quantity 
control — again consistent with eqn. (2) in Weitzman (1974). 

5.4. Volatility of tradable permit schemes and fees 

Volatility is generally considered to be an undesirable feature of 
markets. In our setting, volatility can be measured for total usage, the 
monetary cost of usage, and the full cost of usage. Some comparisons are 
clear-cut. Total usage varies from state to state when usage is rationed 
with a fee, but not when it is rationed using a TPS if the permit constraint 
always binds. In contrast, the monetary cost of gaining access to the 
facility is constant with a fixed fee, but varies with a TPS because the 
equilibrium permit price depends on the state. 

The relative volatility of the full costs, pf and pc, is not as obvious 
since they vary in both regimes, with the amount of variation depending 
on the nature of shocks. In the interest of space, attention is limited here 
to additive shocks. As shown in the Appendix, 

Var
�
pf �¼

d2⋅VarðaÞ þ b2⋅VarðcÞ þ 2bd⋅Covða; cÞ
ðbþ dÞ2

;

VarðpcÞ¼VarðaÞ; ​ and  

VarðpcÞ � Var
�
pf �¼

s
ðbþ 2dÞ ⋅ VarðaÞ � b ⋅ VarðcÞ � 2d⋅Covða; cÞ:

With a fee, the variance of the full cost increases with the variance of 
demand, the variance of costs, and the covariance between demand and 
costs. By contrast, with a TPS the variance of full cost varies one-to-one 
with the variance of demand, and does not depend on costs. Hence, if 
only cost is variable the full cost is more volatile with a fee. If only de
mand is variable, the full cost is more volatile with a TPS. If demand and 
cost are equally variable, the full cost is more volatile with a TPS unless 
demand and costs are perfectly and positively correlated. Overall, 
therefore, the relative volatility of full costs for the two control in
struments depends on whether variability originates primarily with 
demand or primarily with costs. 

6. TPS vs. fees: nonlinear functions 

The analysis in Section 5 is based on linear demand and cost func
tions. If either function is nonlinear, Weitzman’s rule for ranking the 
efficiency of prices and quantity controls applies only as a local 
approximation. Studies of congestible facilities sometimes assume 
constant-elasticity demand functions which are strictly convex. More 
important, congestion is often a nonlinear phenomenon. At low usage 
levels, users may not interfere with each other much, if at all. For 
example, if the arrival rate of users at a server remains below server 
capacity, and service times are uniform, no queuing occurs. Crowding at 
outdoor recreational facilities is typically not considered problematic 
unless usage exceeds carrying capacity. There is some evidence that 

Fig. 5. TPS outperforms fee with additive and multiplicative cost shocks.  

35 Correlation of this sort could be due to weather. For example, in bad 
weather travelers may prefer to drive rather than walk or take transit, but 
driving is slowed by poor visibility or slippery conditions. Similarly, after a 
fresh snowfall skiing conditions are excellent but getting to the ski area can be 
difficult. 

36 With road transportation this is possible if on bad days drivers are forced off 
their normal route onto an alternative that is more circuitous, but has a higher 
capacity. Similarly, in bad weather a narrow, scenic trail may be closed, and 
hikers redirected to a rougher but wider alternative path. 
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visitors do not feel crowded unless the number of contacts exceeds their 
expectations (Ditton et al., 1983; Michael and Reiling, 1997). There is 
also evidence that, when crowding does become annoying, disutility 
grows at an increasing rate with the number of encounters (Boxall et al., 
2003). Similarly, airport congestion can be very sensitive to small 
changes in demand (Jacquillat and Odoni, 2015). 

As far as road congestion, traffic engineering studies find that on 
highways drivers can maintain free-flow speeds until flow reaches a 
substantial fraction of capacity. Beyond this, speeds can drop rapidly 
and even unpredictably. Traffic control strategies such as ramp metering 
and perimeter control are used to avoid breakdown in flow (Menelaou 
et al., 2017). Following the US Bureau of Public Roads (1964), traffic 
engineers often specify the relationship between travel time, T, and 
flow, Q, using a power function of the form T ¼ T0ð1 þ dðQ=KÞεÞ, where 
T0is free-flow travel time, K is a measure of road capacity, and ε ¼ 4. If 
user cost is proportional to travel time, this function can be translated 
into a cost function of the form C ¼ cþ dNε, which we consider below. 

In this section we allow demand and cost functions to be nonlinear. 
While the analysis is not as straightforward as in Section 5, several in
sights can be derived. We begin by showing that Theorems 3 and 4 both 
generalize. We then identify circumstances where a TPS is superior. 

6.1. Potential advantage of a fee 

6.1.1. Variable costs 
If demand is stationary, a fee outperforms a TPS when certain con

ditions are met. The key condition is identified in: 

Assumption 2. For any pair of states, one state, ω, is more favorable 
than another state, bω, in the sense that (a) CωðNÞ � CbωðNÞfor all N � 0, 
and (b) Cω’ðNo

ωÞN
o
ω < Cbω ’ðNo

bω
ÞNo
bω

. 

Assumption 2 (a) stipulates that at any usage level the user cost is 
lower in state ω than state bω. Assumption 2(b) requires, in addition, that 
the marginal external cost is lower in state ω than state bωat their 
respective FBO usage levels. If so, the FBO fee is lower in state ω than 
state bω: fo

ωðN
o
ωÞ < fo

bω ðN
o
bω
Þ. 

Given Assumption 2(a), Assumption 2(b) is plausible insofar as states 
with high private costs are likely to have high external costs. Never
theless, if no restrictions are imposed on the demand function, 
Assumption 2(b) is assured only under fairly restrictive conditions on 
the cost function. As explained in the Appendix, a necessary condition is 
that the cost curve be steeper in the less favorable state; i.e. Cbω ’ðNÞ >
Cω’ðNÞfor all N > 0. A sufficient condition to satisfy Assumptions 2(a) 
and 2(b) is that the cost function has the power form CωðNÞ ¼ cþ dωNε, 

where c � 0and ε > 0are constants and only dωis state-dependent. If ε ¼
1, this reduces to the linear case which led to Theorem 3. As noted 
above, the US Bureau of Public Roads (1964) proposed a power function 
with ε ¼ 4. 

If Assumption 2 holds, states can be ranked in order from least 
favorable to most favorable. If costs are variable, but demand is sta
tionary, a fee then outperforms a TPS: 

Theorem 5. Let Assumption 2 hold. If only costs are variable, a fee out
performs a TPS. 

Theorem 5 is proved in the Appendix. It generalizes Theorem 3 since 
it applies regardless of the functional forms of the demand and cost 
functions as long as they satisfy Assumption 2. Similar to Theorem 4, the 
proof entails showing that given any permit allocation Y for a TPS, there 
exists a fixed fee that supports a more efficient usage level than the TPS 
in every state. The fee drives usage below Y in every state for which 
optimal usage is below Y, and it supports usage above Y in every state for 
which optimal usage is above Y. 

6.1.2. Variable demand 
Theorem 4 established that with linear functions a fee outperforms a 

TPS if the congestion coefficient d is constant and the permit constraint 
always binds. This result continues to hold for demand curves of arbi
trary shape: 

Theorem 6. Assume that the cost curve is linear, the congestion coefficient 
d is constant, and the permit constraint always binds. A fee then outperforms 
a TPS. 

Theorem 6 is proved in Fig. 6 using a net benefit curve and MEC 
curve as in Fig. 4, and taking a similar approach to the proof of Theorem 
4. The MEC curve has a constant slope of d. The dashed line through 
points f, c, and h has a slope of � d. Dotted line jehas the same slope. The 
optimal permit constraint is Y�, and a fixed fee is imposed of bf ¼ dY�. If 
the net benefit curve happens to cross the MEC curve at point b, both the 
TPS and the fee support the optimum. If the net benefit curve crosses 
elsewhere, neither instrument supports the optimum. In Fig. 6, the net 
benefit curve crosses at point c so that optimal usage is No > Y�. The 
deadweight loss from insufficient usage with the TPS is measured by 
area abc. The deadweight loss from excessive usage with the fee equals 
area ced. Now 

abc > f
|fflffl{zfflffl}
ð1Þ

bc > c
|fflffl{zfflffl}
ð2Þ

hg > j
|fflffl{zfflffl}
ð3Þ

ed > c
|fflffl{zfflffl}
ð4Þ

ed: (40)  

Inequalities (1) and (4) hold because the net benefit curve is steeper than 
the MEC curve. Equality (2) is obvious. Finally, inequality (3) applies 
because triangles chgand jedare equiangular, and side ghis longer than 
side de. The chain of inequalities in (40) proves that the fee 
bf outperforms the TPS. A similar figure can be used to prove that fee bf is 
also superior to the TPS when optimal usage is below Y�. The optimal fee 
f�, which generally differs from bf , does not necessarily outperform the 
TPS in every state, but it does yield (even) higher expected welfare. 

In summary, Theorem 6 shows that a fee outperforms a TPS 
regardless of the shape of the inverse demand curve or how it varies 
from state to state. The reasoning is the same as for Fig. 4 and Laffont’s 
result: the net benefit curve is variable and it is steeper than the 
MECcurve. 

6.2. Potential advantage of a TPS 

Theorems 5 and 6 establish fairly general conditions under which a 
fee outperforms a TPS. Nevertheless, they are limited in scope. Theorem 
5 does not allow demand to vary, and it relies on Assumption 2 which 
does not hold in many instances. 

It does not hold in Figs. 3, 4, or 5, and in Fig. 5 the TPS outperforms a 

Fig. 6. Proof of Theorem 6.  
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fee. Theorem 6 requires the cost function to be linear, and it rules out 
capacity shocks that affect the congestion coefficient. 

We now present an example with variable demand and a fixed, but 

nonlinear cost function in which a TPS dominates a fee. In the example, 
shown in Fig. 7, the facility has a maximum capacity of K so that the cost 
curve and MSCcurve both become vertical at N ¼ K. There are two states 
of demand, G and B. In both states, the capacity constraint binds in both 
the unregulated equilibrium and the FBO. To support the FBO without 
some form of non-price rationing such as queuing, a fee must be imposed 
that is higher in state G than state B. A fixed fee cannot support the 
optimum in both states. Yet, with a TPS, the FBO can be achieved simply 
by setting Y� ¼ K.37 If the planner does not know capacity precisely, it 
could adopt a margin of safety by setting the TPS at, say, 95%of esti
mated capacity.38 

This example shows that a TPS can outdo a fee if the cost function is 
convex, or becomes sufficiently steep. FBO usage levels then vary little 
across states. Viewed another way, the MEC curve can be steeper than 
the net benefit curve. Note that with a linear demand curve, p ¼ a � bN, 
and the power cost function C ¼ cþ dNε, the absolute slope of the net 
demand curve is bþ dεNε� 1. The absolute slope of the MECcurve is 
dε2Nε� 1. The larger is ε, the steeper the MECcurve relative to the net 
benefit curve. 

To explore this reasoning further, we use a numerical example that is 
descriptive of peak-period automobile commuting. The cost function 
does not vary, and has the functional form CðNÞ ¼ cþ dNε. Demand is 
subject to either additive or multiplicative shocks with two states: good 
days (G) and bad days (B). Parameters with fixed values are aB ¼ 40, 
bB ¼ 0:002, and c ¼ 8. For additive shocks, aG ¼ 50, and for multipli
cative shocks, bG ¼ 0:0016. The probability of a good day is set to either 
0.2 or 0.8. Parameter ε governing the curvature of the cost function is set 
to 1, 2, 3, or 4.39 Parameter d is adjusted to maintain a relatively con
stant usage level. There are 16 cases in all. For the eight cases with ε ¼
1or ε ¼ 2, the fee outperforms the TPS. For the other eight cases with 
ε ¼ 3or ε ¼ 4, the TPS outperforms the fee. This provides some support 
for the conjecture that a TPS has an advantage over a fee when cost 
functions are sharply curved. de Palma et al. (2018) obtain a similar 
result in a numerical study of route choice. 

In summary, we have shown that a fee outperforms a TPS under 
Weitzman’s assumptions (i.e., with linear demand and cost functions, 
additive shocks, and a binding permit constraint). A fee is also generally 
superior with multiplicative shocks. However, a TPS may be superior if 
the permit constraint does not always bind, if the cost function is strictly 
convex, or if usage is bounded by a capacity constraint. 

7. An adaptive TPS 

So far, the comparison of TPS and fees has been limited to a 
dichotomous choice between basic schemes. The fee is set at a fixed 
amount per usage that does not depend on either the state or total usage. 
Similarly, the number of permits allocated each day is independent of 
the state. Both schemes can be improved at the cost of additional 
complexity. For example, Weitzman (1978) considered a combination of 
price and quantity regulation. Kaplow and Shavell (2002) proposed a 

Fig. 7. Permit outperforms fee: Example with capacity constraint.  

Fig. 8. Monetary price of usage with flat fee, first-best fee, and adaptive TPS. 
b ¼ 1, d ¼ 1, A0 ¼ 25, A1 ¼ 50. 

Fig. 9. Example with nonunique flat fee.  

37 This result is consistent with Akamatsu and Wada (2017) who show that a 
planner who is uncertain about demand can still support the social optimum 
using permits, but not a fee because the optimal fee depends on demand.  
38 As noted above, traffic engineers often restrict traffic movements to avoid 

flow breakdown. Hall (2018) argues that the same policy could be adopted with 
a congestion charge. However, Anderson and Davis (2018) have recently 
challenged the claim that heavy demand causes flow to break down. They 
provide empirical evidence that drops in capacity are caused by supply shocks 
such as road construction, disabled vehicles, and bad weather.  
39 In traffic engineering studies, parameter ε is usually set between 2 and 5. In 

our setting, the pertinent relationship is between usage cost and the number of 
users on a given day or other time interval, and the duration of the usage period 
may be endogenous. Depending on the structure of trip-timing preferences, the 
equilibrium cost function can be linear (Arnott et al., 1993), near-linear (de 
Palma and Marchal, 1999), quadratic (Braid, 1996), or some other function. 
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nonlinear tax scheme for pollution in which the tax rate is chosen to 
concide with the marginal pollution damage curve. This tax schedule is 
superior to pure quantity control because quantity control is, in effect, a 
specific nonlinear tax with no charge for emissions below the target, and 
an infinite charge above it. 

In this section we briefly explore an adaptive version of the basic TPS 
that effectively combines quantity and price control. The modified TPS 
is inspired by a pollution control scheme studied by Roberts and Spence 
(1976).40 In their scheme, the government first issues tradable licenses. 
It then imposes a per-unit tax on any firm that emits more than its license 
holding, and grants a per-unit subsidy to any firm that emits less than its 
holding. The tax protects firms against very high abatement costs, while 
the subsidy gives them an incentive to abate further if abatement costs 
turn out to be low. 

The adaptive version of the TPS considered here operates similarly. 
The government issues Y permits, as before. In addition, it offers to sell 
further permits at a price s, and buy permits at a price r, where r < s. 
Offers to buy and sell act as a collar on the price of permits by limiting it 
to the range ½r; s�. Since the values of r and s are fixed, the parameters 
defining the TPS are independent of the state. However, the TPS is 
adaptive because users can buy or sell permits once they learn the 
state.41 Let q denote the equilibrium price of permits with the collar, and 
q0the price at which permits would trade without the collar. Depending 
on the state, three outcomes are possible. If q0 2 ½r; s�, no government 
trades occur. If q0 < r, the government buys permits which raises the 
price to q ¼ r. Finally, if q0 > s, the government sells additional permits 
which drops the price to q ¼ s. 

The optimal adaptive TPS is derived in the Appendix for the linear 
model with demand shocks when the composite parameter A is uni
formly distributed on the interval ½A0;A1�. The solution is nondegenerate 
in the sense that, for all distributions with A1 >A0, the government buys 
permits when A is close to A0, sells permits when A is close to A1, and 
does not trade when A takes intermediate values. 

The allocative efficiency of the adaptive TPS can be compared with 
the efficiencies of the optimal flat fee and basic TPS using the index of 
relative efficiency 

ei¼
EWi* � EWn

EWo � EWn ; ​ ​ i ¼ f ; c; a;

where a denotes the adaptive TPS. Index eimeasures the efficiency gain 
from scheme i as a fraction of the maximum possible gain that can be 
achieved in moving from the unregulated equilibrium to the social op
timum, EWo � EWn. The indexes work out to 

ec¼ 1 �
VarðAÞ

A2

�
bþ d

d

�2

; (41)  

ef ¼ 1 �
VarðAÞ

A2
; (42)  

ea¼ 1 �
VarðAÞ

A2

�
bþ d

2bþ 3d

�2

: (43)  

All three schemes are fully efficient when there are no shocks (i.e., when 
VarðAÞ ¼ 0). All fall short of full efficiency when demand or cost is 
variable. Consistent with Theorem 1, the fee is more efficient than the 

basic TPS. However, the adaptive TPS is more efficient than the fee. The 
gap from full efficiency for the adaptive TPS is smaller by a factor 1� ea

1� ef ¼
�

bþd
2bþ3d

�2
. Depending on the relative size of b and d, this factor ranges 

from 1=4down to 1=9. 
Fig. 8 compares the monetary price with a flat fee, first-best fee, and 

adaptive TPS for a numerical example with b ¼ 1, d ¼ 1, A0 ¼ 25, and 
A1 ¼ 50. With the adaptive TPS, the government buys permits when 
A2 ½25; 35Þ, sells additional permits when A2 ð40;50�, and is inactive 
when A 2 ½35; 40�. It is active 80%of the time.42 The adaptive TPS tracks 
the FBO fee more closely, on average, than the flat fee. This is consistent 
with Kaplow and Shavell’s (2002) argument that nonlinear tax schemes 
outperform flat taxes. 

8. Extensions 

In this section we sketch two ways in which the model can be 
extended. The first concerns lead times in usage decisions, and the 
second concerns external costs of usage other than congestion. 

8.1. Lead times in usage decisions 

Usage decisions are often made well before demand and supply 
conditions are fully known. Commercial airlines typically schedule 
flights months in advance, and prefer not to cancel them unless cir
cumstances are especially unfavorable. The same is true of railways and 
trains. Recreationists can plan or book trips weeks or months before they 
take place, and so on. When usage decisions are made far in advance, 
they can be conditioned on predictable circumstances such as season 
and scheduled operating hours, but not unpredictable events such as 
infrastructure failures or weather at the time of usage. 

Lead times in decision-making by users can be accommodated in the 
model as follows. Let t denote the future time at which usage is 
considered. For ease of reference, t will be called a day. Agents are 
assumed to make usage decisions before t, and they neither balk nor 
make a last-minute decision to use a facility once they learn the actual 
state at t. Let Etdenote the frequency distribution of days. For each t, 
there is a probability or frequency distribution of states. Let Eωjtdenote 
the expectations operator over states conditional on t. 

Two cases will be entertained as far as the regulator’s decisions. In 
one, the regulator can adjust the fee and permit allocation according to t, 
but not ω. For example, flight schedules and hiking permits can be 
varied by time of year. In this case, the analysis is qualitatively the same 
for each t as if agents and regulator know only the unconditional dis
tribution of states. It is then straightforward to show that a fee and TPS 
are equivalent.43 

In the second case, the regulator cannot condition the fee or permit 
allocation on either t or ω.44 Equation (12) determining usage with the 

40 Czerny (2008) presents this scheme diagrammatically, but does not 
examine it analytically or derive its welfare performance relative to a fixed fee 
or basic TPS.  
41 As Schmalensee and Stavins (2017) explain, the Regional Greenhouse Gas 

Initiative in the northeastern United States uses an auction that operates in a 
similar way. When auction prices reach a specified level, additional allowances 
are sold. There is also a price floor below which allowances are not sold at 
auction. 

42 As shown in the Appendix, regardless of parameter values both buying and 
selling are more frequent than not trading.  
43 As noted in Section 2, this is true of Weitzman’s model for variations in 

demand, and Laffont’s model for variations in costs.  
44 It may still be possible for a facility manager to adjust operational measures 

once the state is known. For example, an airport operator can set the maximum 
number of takeoff and landing operations per hour according to either Visual 
Meteorological Conditions or Instrument Meteorological Conditions. Similarly, 
speed limits can be reduced during road work, entrance rates to museum ex
hibits can be controlled during periods of high demand, and so on. Another 
possibility is for the regulator to index the fee or permit allowance to some 
observable measure or signal. For example, carbon emissions can be indexed to 
national GDP in the form of an emissions intensity cap (Newell and Pizer, 
2008). This has the advantage of relaxing the cap when abatement costs are 
high, and tightening it when the costs are low. The disadvantage is that setting 
the cap as a function of another, uncertain variable adds noise. 
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fee is then replaced by 

Eωjt
�

pω
�
Nf

t

��
¼Eωjt

�
Cω
�
Nf

t

��
þ f ; ​ for ​ each ​ t; ​  

and eqn. (13) for the fee is replaced by 

f � ¼
Et

�

Eωjt

�

Cω’
�
Nf

t

�
Nf

t
∂Nf

t
∂f

���
�
�
�

f �

Et

�
∂Nf

t
∂f

��
�
�
�
f �

: (44)  

With the TPS, the equilibrium price of permits depends on t rather than 
ω. Let ΩCdenote the set of days when the permit constraint binds. 
Equation (17) for equilibrium usage is replaced by 

Eωjt
�

pω
�
Nc

t

��
¼Eωjt

�
Cω
�
Nc

t

��
þ qt; ​ for ​ each ​ t;

and eqn. (20) is replaced by 

Et2ΩCfqtgjY� ¼Et2ΩC

�
Eωjt
�
Cω’
�
Nc

t

�
Nc

t

��
jY� : (45)  

Comparing (44) and (45), it is clear that the fee and TPS are not, in 
general, equivalent unless usage decisions are the same on every day. 
Thus, if the regulator cannot adjust instruments to either unpredictable 
or predictable fluctuations, the two instruments still perform differently 
under uncertainty even when users cannot adapt to unpredictable 
fluctuations. 

8.2. Additional external costs 

Users sometimes create external costs other than congestion. Some 
external costs are incurred by the population at large such as noise, 
pollution, greenhouse gas emissions, and damage to flora and fauna. Call 
them environmental costs. Environmental costs generally depend on the 
amount of usage, and they can also depend on the state.45 Denote them 
by RωðNÞ. Other types of external costs are borne by users such as 
damage to roads and rail track, wear and tear on hiking trails, depletion 
of fishing stocks, and so on. Call them damage costs. Damage costs are a 
function of cumulative — rather than instantaneous — usage, and they 
mainly affect future, rather than contemporaneous, users. They can also 
depend on the state.46 Denote damage costs incurred per unit of usage by 
DωðUÞwhere U � EωfNωgis average usage.47 

Accounting for environmental costs and damage costs, expected 
welfare is given by an extension of eqn. (11): 

EW ¼E
�Z Nω

0
pωðnÞdn � CωðNωÞNω � DωðUÞNω � RωðNωÞ

�

: (46)  

With a fee, the equilibrium usage condition is given by an extension of 
eqn. (12): 

pω
�
Nf

ω
�
¼Cω

�
Nf

ω
�
þDωðUÞ þ f : (47) 

The first-order condition for the optimal fee is   

Substituting (47) into (48) yields 

f � ¼
E
�
�
Cω’
�
Nf

ω
�
Nf

ω þ Rω’ðNωÞ
� ∂Nf

ω
∂f

��
�
�
�
f �

E
�

∂Nf
ω

∂f

��
�
�
�
f �

þ E
�

Dω’ðUÞNf
ω
�
: (49) 

Eqn. (49) is a generalization of (13). 
With a TPS, the equilibrium usage condition is given by an extension 

of eqn. (17): 

pω
�
Nc

ω
�
¼Cω

�
Nc

ω
�
þDωðUÞ þ qω: (50)  

The first-order condition for the optimal permit allocation is 

Eω2Ωc

(
pω
�
Nc

ω
�
� Cω

�
Nc

ω
�
� C’

ω
�
Nc

ω
�
Nc

ω � DωðUÞ
� Dω’ðUÞNc

ω � Rω’ðNωÞ

)�
�
�
�Y

*¼ 0;

or 

Eω2ΩcfqωgjY� ¼Eω2Ωc

�
Cω’
�
Nc

ω
�
Nc

ωþDω’ðUÞNc
ωþRω’ðNωÞ

�
jY� : (51) 

Despite the fact that users do not immediately suffer the damage 
costs they impose, marginal damage cost appears on the right-hand side 
of (51) in the same way as the marginal external congestion cost. 

Further insight into the implications of damage costs and environ
mental costs can be gleaned with linear functions. In addition to the 
demand and cost functions in (21), we adopt 

DωðUÞ¼ gωU;

RωðNÞ¼ ðrωþ eωNωÞNω:

Damage costs are assumed to be proportional to usage, whereas total 
environmental costs are quadratic with eω > 0.48 With additive shocks, 
expected welfare with the fee is given by a generalization of (28): 

EWf *¼
bþ 2d þ 2g

2ðbþ eþ 2d þ 2gÞ2
ðA � rÞ2 þ

b � 2e
2ðbþ dÞ2

σ2
A:

It the permit constraint always binds, expected welfare with the TPS is 
given by a generalization of (30): 

EWc* ¼
bþ 2d þ 2g

2ðbþ eþ 2d þ 2gÞ2
ðA � rÞ2:

The relative advantage of the fee over the TPS is given by an extension of 

E
�
�
pω
�
Nf

ω
�
� Cω

�
Nf

ω
�
� C’

ω
�
Nf

ω
�
Nf

ω � DωðUÞ � Dω’ðUÞNf
ω � Rω’ðNωÞ

� ∂Nf
ω

∂f

�

f *
� E

�
Dω’ðUÞNf

ω
�

⋅ E
�

∂Nf
ω

∂f

�

jf *¼ 0: (48)   

45 For example, certain pollutants are more harmful to health during meteo
rological inversions.  
46 For example, dirt roads and hiking trails are more susceptible to damage 

after rainstorms than when they are dry. Rail track is more vulnerable to 
cracking in extreme cold, and more vulnerable to warping in extreme heat.  
47 For a given accounting period, average usage is proportional to cumulative 

usage. The ecological capacity of a recreational ecosystem is typically a func
tion of total seasonal use, so in this case the relevant accounting period is a 
year. 

48 For example, environmental health costs may grow at an increasing rate 
with the concentration of pollutants. In the case of recreational activities, 
damage to flora and fauna can mount if hiking paths become so crowded that 
hikers switch from designated trails to out-of-bound routes (Fleishman et al., 
2007). Similarly, at crowded campsites campers may pitch their tents on un
prepared sites that are susceptible to damage. 
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(31): 

Δ¼EWf * � EWc*¼
b � 2e

2ðbþ dÞ2
σ2

A:

The fee is superior to the TPS if and only if b > 2e. Thus, if envi
ronmental costs are large enough, the TPS can outperform the fee. To see 
that this is consistent with Weitzman’s rules, note that the inverse net 
demand curve has a slope bþ dþ g, and the MECcurve has a slope dþ
gþ 2e. The MECcurve is steeper than the inverse net demand curve if 
2e > b. When environmental externalities are present as well as 
congestion, fluctuations in usage are more costly and this favours 
quantity control — a point that Czerny (2010) mentions. This is an 
important consideration in large cities, especially in China and India, 
where the health costs of air pollution are comparable in magnitude to 
the costs of traffic congestion. 

This simple extension of the basic model ignores the possibility that 
damage can be reduced by maintenance or other conservation activities. 
If such actions are possible, users will not bear the full costs of damage 
and the feedback effect of damage in limiting usage will be weakened. 
The portion of damage costs that users do not incur will enter the social 
calculus in the same way as environmental costs, and further strengthen 
the relative performance of a TPS. 

9. Conclusions 

Tradable Permit Schemes (TPS) have been implemented at the con
tinental, national, and regional level to control carbon emissions and 
other pollutants. Slot trading and slot auctions have been used to control 
usage of airports. Academic interest is now growing in the potential use 
of TPS to regulate road transport. Advances in information and com
munications technology have made the use of TPS conceivable for roads 
and other congestible facilities such as recreational areas. TPS also have 
an advantage in public acceptability over tolls and other user fees since 
permits can be distributed free so that users in aggregate do not incur an 
out-of-pocket cost. TPS thus offer a plausible alternative to fees as a 
means of regulating access to facilities that are prone to overusage. 

It is well known that TPS and fees can both support optimal usage of 
a congestible facility in a stationary environment. What remains rela
tively unexplored is how the two instruments compare when demand 
and costs fluctuate, and both the quantity of permits and the fee are 
constrained to be the same in all states. We find that, in general, a TPS is 
relatively efficient if optimal usage levels are similar across states. 
Analogously, a flat congestion fee achieves high efficiency if the first- 
best fee varies little over states. When usage costs are variable, a fee 
outperforms a TPS if the optimal congestion fee is higher in states where 
the usage cost function is higher. A fee also tends to outperform a TPS 
when the demand and cost functions are linear and do not vary too 
much. However, under several other circumstances a TPS can outper
form a fee. A TPS tends to be superior if the cost function is strongly 
convex or if usage is bounded by a capacity constraint. A TPS has an edge 
in flexibility if demand or costs fluctuate sufficiently that the permit 
constraint does not always bind. And a TPS is advantageous if exter
nalities such as pollution are present that, unlike congestion, do not give 
agents direct feedback on the socially efficient level of usage. 

Further analysis with nonlinear functions, empirically-based proba
bility distributions of states, and facility–specific characteristics is 
needed to assess the robustness of these findings. For facilities such as 
roads that are generally accessible at all times, usage tends to spread out 
by time of day as demand increases, and equilibrium costs rise more 
smoothly than for facilities with restricted operating hours. Similarly, 
for facilities with multiple sites or routes, usage can spread out over 
space. Downhill skiing areas present a more complicated case because 
congestion can occur on the slopes, as queues for ski lifts, on connecting 
trails, and at the lodge (Barro and Romer, 1987). 

The model can be extended in various ways. It can encompass other 

choice dimensions besides the amount of usage including time of use, 
travel mode for transportation, hiking trail, or visit duration for recre
ation. Nonatomistic users can also be considered such as major airlines 
that individually account for a substantial fraction of total airport traffic. 
As Brueckner (2009) shows, with nonatomistic users congestion fees and 
TPS are no longer equivalent even without uncertainty.49 

In the model the regulator cannot condition either the number of 
permits or the fee on the state, but the regulator does know the proba
bility distribution of states. In practice, this may not be the case. The 
frequency of floods, windstorms, and other severe natural events is 
evolving as the climate changes. Nature areas and other ecosystems may 
be susceptible to catastrophic or irreversible effects. Human-caused 
shocks such as transit strikes and terrorist attacks are also hard to 
quantify. The performance of quantity controls and price controls may 
differ in the face of these uncertainties, and it may be wise to adopt 
policies that are robust to the worst circumstances. 

Yet another possibility is to consider a system of multiple permits in 
which separate permit constraints are imposed on each facility within a 
network or group of facilities. Several questions arise in such a setting. 
Would a multiple permit scheme be welfare-superior to a single inte
grated scheme? If so, would the advantage be large enough to outweigh 
the greater administration and compliance costs? What happens if fa
cilities are controlled by different entities? Czerny and Lang (2019) 
consider two airports with interconnecting flights and local objective 
functions that independently choose between setting fares and imposing 
slot controls to constrain traffic volumes. They show that, in general, 
independent decision-making does not yield a first-best outcome. Each 
airport ignores the effects of its decision on welfare at the other airport. 

We conclude with a few comments on the potential acceptability and 
equity advantages of TPS relative to tolls for road travel. Since permits 
can be distributed free, drivers do not have to pay a charge to a gov
ernment or road administrator. This avoids objections, often raised 
against tolls, that permits serve as a cash cow, or constitute double 
taxation. It also addresses equity concerns that the rich can buy time. 
Laboratory experiments by Exley and Kessler (2019) indicate that peo
ple care more about inequity in time than inequity in money. This may 
help to explain aversion to policies that allow users to bypass queues on 
roads, as well as other facilities such as airports, amusement parks, and 
hospitals. Controlling access using permits rather than tolls is likely to be 
less controversial. 

A potential weakness of TPS is that there is no obviously acceptable 
way to distribute permits.50 Our model features a single facility, and 
potential users are identical other than for their willingness to pay. In 
reality, travel takes place on extensive road networks at different times 
of day. Individuals differ in numerous ways: residential and workplace 
locations, income, opportunity cost of travel time, flexibility in when to 
travel, frequency of travel, and so on. Depending on the scope of a TPS, 
only a small fraction of agents may need permits. Allocating them to 
every resident of a large area would leave few permits in the hands of 
those who need them. Yet, targeting permits to these individuals may be 
viewed as inequitable. It also risks distorting behavior in undesirable 
ways (e.g., encouraging vehicle ownership, changing place of residence 
or work, altering route, etc.). 

Similar issues arise with credit-based congestion pricing (CBCP). 
CBCP involves paying tolls rather than using permits, and individuals 
are given money endowments (i.e., credit) to offset the cost of paying 
tolls. Yet, despite these differences, the distribution of credit raises 
similar problems to the distribution of permits. Kockelman and 

49 Nonatomistic or “large” users have an incentive to internalize their self- 
imposed congestion when they can affect the total amount of usage. Discrimi
natory charges based on user size are then necessary to support efficient usage 
(Brueckner, 2002). A TPS is free of this complication, although inefficiencies 
may arise if large users exercise their market power in trading permits.  
50 We are grateful to an anonymous referee for raising this point. 
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Kalmanje (2005) describe how CBCP would work, and summarize public 
attitudes towards it. Gulipalli et al. (2008) survey expert opinions. 
Transport economists raised concerns about the distribution of credit. 
They considered it unfair for everyone with a driver’s license to receive 
credit, whether or not they actually pay tolls. Some transport economists 
opposed basing credit allocations on income. Doing so might be 
administratively burdensome, and would make CBCP like a welfare 
program. Economists generally favour addressing distributional goals 
using income taxes, rather than distorting prices for goods and services. 
Allocating credit to vehicle owners, on the other hand, would tend to be 
regressive. Gulipalli et al. note that basing credit on residential location 
might be advantageous if tolling is widespread, while basing it on dis
tance driven might be better if tolling is limited to highways. They 
provisionally settle on basing it on vehicle registration as the best of 
imperfect alternatives, noting that owners of more than one vehicle 
should receive only one credit allotment. 

In an application of CBCP to Austin, Texas, Kalmanje and Kockelman 
(2004) assume that credit is distributed to all residents with a valid 
driver’s license. In another application to Dallas-Fort Worth, Gulipalli 
and Kockelman (2008) consider several allocation mechanisms 
including to all registered vehicle owners, and restricting credit to 
commuters who use freeways. Yet another possibility would be to favour 
residents who lack good access to public transit. In summary, deciding 

how to allocate credit or permits is a difficult question that requires 
further research. 
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A Appendix (for online publication) 

A.1 Bounds on the optimal fixed fee (Section 4.1) 

Usage with the FBO fee in state ω, No
ω, is defined implicitly by the condition 

pω
�
No

ω
�
¼Cω

�
No

ω
�
þ f o

ω:

Usage with the fixed fee in state ω, Nf
ω, is defined implicitly by the condition 

pω
�
Nf

ω
�
¼Cω

�
Nf

ω
�
þ f :

If f >fo
ωthen Nf

ω < No
ωfor all ω 2 Ω. Welfare can be improved by marginally reducing f in order to increase Nf

ωcloser to No
ωin every state. Similarly, if f <

f
�

o

ω
then Nf

ω > No
ωfor all ω 2 Ω. Welfare can be improved by marginally increasing f in order to reduce Nf

ωcloser to No
ωin every state. 

A.2 Example of nonunique optimal fixed fee (Section 4.1) 

The example features linear functions as in Section 5. The cost function, CðNÞ ¼ dN, is stationary. There are two states of demand, B and G, which 
occur with probabilities ℘and 1 � ℘, respectively. In state B, the inverse demand curve is pBðNÞ ¼ aB � bN. In state G, the inverse demand curve is51 

pGðNÞ¼
�

aG � bN ​ for ​ N � ðaG � ΓÞ=ðbþ dÞ
​ ​ ​ ​ ​ 0 ​ ​ ​ ​ ​ ​ ​ for ​ N > ðaG � ΓÞ=ðbþ dÞ ​  

Parameter values are such that aG > aB, and Γ 2 ðfo
B;f

o
GÞwhere fo

ωis the first-best fee for state ω, given in eqn. (25). The example is constructed so that 
two distinct fees can yield the same expected welfare. One fee is f ¼ fo

Bwhich supports optimal usage in state B, No
B, without affecting usage in state G. 

The other fee satisfies f 2 ðΓ; fo
GÞ. This larger fee reduces usage in state G towards No

Gwhile driving usage in state B below No
B. It is straightforward to 

show that the two fees yield the same expected welfare if parameter values satisfy: 
�
℘ðaG � aBÞ

2
� a2

G

�
d2þ 2dðbþ 2dÞaGΓ � ðbþ 2dÞ2Γ2¼ 0:

One such instance is aG ¼ 20, aB ¼ 10, b ¼ 1, d ¼ 1, Γ ¼ 5, and ℘ ¼ 0:25. The low-fee solution is  

f ¼ f o
B ¼ 3: _3; ​ NB ¼ No

B ¼ 3: _3; ​ NG ¼ 7:5:

The deadweight loss from overusage in state G is shown by area def in Fig. 9. The high-fee solution is 

51 Contrary to what is assumed in Section 3, the inverse demand curve in state G is not differentiable. It can be closely approximated by a smooth function that still 
illustrates nonuniqueness. 
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f ¼ 5:8 _3; ​ NB ¼ 2:08 _3; ​ NG ¼ 7:08 _3:

The deadweight loss from underusage in state B is shown by the dark area abc, and the deadweight loss from overusage in state G is shown by the 
small dark area within area def . The high fee balances the two areas because state G is three times as likely as state B. Expected welfare for both fees is 
EW ffi 53:385. 

A.3 Positive usage with the optimal fixed fee (Section 5.1) 

Unregulated equilibrium usage is given by eqn. (23): Nn
ω ¼ Aω=ðb þ dÞ. The permit constraint is (29): Y� ¼ A=ðb þ 2dÞ. The constraint binds if 

Aω

A
>

bþ d
bþ 2d

: (A.1)  

The optimal fixed fee is given by eqn. (27): f� ¼ dA=ðb þ 2dÞ. Usage is Nω ¼ ðAω � f�Þ=ðb þ dÞ, which is positive if 

Aω

A
�

d
bþ 2d

: (A.2)  

Condition (A.2) is satisfied strictly if (A.1) holds. 

A.4 Proof of Theorem 2 (Section 5.1) 

Consider an example with two states, G and B. Expected welfare for the two states in the unregulated and FBO regimes is derived from eqn. (24): 

EWn¼
b

2ðbþ dÞ2
�
℘A2

Bþð1 � ℘ÞA2
G

�
;

EWo¼
1

2ðbþ 2dÞ
�
℘A2

Bþð1 � ℘ÞA2
G

�
:

Expected welfare with the fee is given by eqn. (28): 

EWf *¼
ð℘AB þ ð1 � ℘ÞAGÞ

2

2ðbþ 2dÞ
þ

b
2ðbþ dÞ2

℘ð1 � ℘ÞðAG � ABÞ
2
: (A.3) 

This formula is applicable only if demand in state B is positive, which requires 

AB

AG
>
ð1 � ℘Þd

bþ ð2 � ℘Þd
: (A.4) 

Expected welfare with a TPS that binds in both states (and achieves at least a local optimum) is given by eqn. (30): 

EWc
BG¼

1
2ðbþ 2dÞ

ð℘AB þ ð1 � ℘ÞAGÞ
2
:

The TPS binds in both states if Nn
B � Y�. Given eqns. (23) and (29) this requires 

AB

AG
�
ð1 � ℘Þðbþ dÞ

bþ 2d � ℘ðbþ dÞ
:

Finally, expected welfare with the TPS when it binds only in state G with Y ¼ No
Gis derived from eqn. (24): 

EWc
G ¼

b
2ðbþ dÞ2

℘A2
B þ

1
2ðbþ 2dÞ

ð1 � ℘ÞA2
G: (A.5) 

The TPS binds only in state G if Nn
B < No

G. Given eqn. (23), this requires 

AB

AG
<

bþ d
bþ 2d

: (A.6) 

Choosing the TPS to bind only in state G is welfare-superior if EWc
G > EWc

BG, or 

AB

AG
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ℘
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ℘
p

þ d
�
ðbþ dÞ

: (A.7) 

The RHS of inequality (A.7) exceeds the RHS of inequality (A.4). A range of values of AB=AGtherefore exists such that both constraints are satisfied. 
The TPS is welfare-superior to the fee if EWc

G > EWf*. Using eqn. (A.3) and (A.5) this implies 

AB

AG
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ℘
p

� ð1 � ℘Þ
℘

: (A.8) 

Given Theorem 1, condition (A.7) must hold when (A.8) is satisfied. The RHS of inequality (A.8) exceeds the RHS of inequality (A.4). Hence the 
nonnegativity condition on demand with the fee can be satisfied when condition (A.8) holds. Note, finally, that condition (A.6) is satisfied when (A.8) 
is satisfied. If condition (A.4) fails, then both the fee and the TPS are optimized for state G and support the same usage level. ■ 
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A.5 Proof of Theorem 3 (Section 5.2) 

Both the cost function, CωðNÞ ¼ cþ dωN, and the FBO fee, fo
ωðN

o
ωÞ ¼ Cω’ðNo

ωÞN
o
ω ¼ ða � cÞdω=ðb þ 2dωÞ, are increasing function of dω. States with 

lower costs (i.e., lower dω) thus also have lower marginal external costs and FBO fees. Assumption 2 is therefore satisfied and Theorem 5 applies. ■ 

A.6 Proof of Theorem 4 (Section 5.2) 

In Theorem 4, parameters a, b, and c can vary with the state, but d is constant. Consider any state ω. To economize on notation, the dependence of 
variables on ω is suppressed. Welfare is given by eqn. (22). If the permit constraint binds, then N ¼ Yand welfare with the TPS is 

Wc¼AY �
bþ 2d

2
N2: (A.9) 

Suppose the fixed fee is set to bf ¼ dY. Usage is then N ¼ ðA � dYÞ=ðb þ dÞ, and welfare with the fee is 

Wf ¼A
�

A � dY
bþ d

�

�
bþ 2d

2

�
A � dY
bþ d

�2

(A.10)  

¼
bA2

2ðbþ dÞ2
þ

Ad2

ðbþ dÞ2
Y �

d2ðbþ 2dÞ
2ðbþ dÞ2

Y2:

Given (A.9) and (A.10), the difference in welfare is 

Wf � Wc¼
b

2ðbþ dÞ2
ðA � ðbþ 2dÞYÞ2 � 0:

Welfare is strictly higher with the fee except in states for which Aω � ðbω þ 2dωÞY ¼ 0(i.e., for which Y ¼ No
ω). Hence, unless optimal usage is the 

same in all states the fee strictly outperforms the TPS. ■ 
The proof of Theorem 4 uses the fee bf ¼ dY. The optimal fee, f�, can be derived using eqn. (14); it works out to 

f � ¼ d
E
�

Aω
ðdþbωÞ

2

�

E
�

1
dþbω

�

þ dE
�

1
ðdþbωÞ

2

�:

The optimal permit allocation can be derived using eqns. (17) and (19): 

Y� ¼
A

Efbωg þ 2d
:

In general, f � 6¼ dY�. Theorem 4 can also be proved by comparing expected welfare with the fee f�, and expected welfare with the permit allocation 
set to Y�. 

A.7 Example with multiplicative demand shocks in which TPS outperforms fee (Section 5.2) 

Consider an example in which only the slope of the demand curve is variable. Parameter b has a two-point distribution: b ¼ bBwith probability ℘, 
and b ¼ bGwith probability 1 � ℘where bB > bG > 0. Demand is higher in state G than state B. 

Suppose the permit allocation is set to support the FBO in state G. The permit constraint does not bind in state B if bB > bGþ d. Using eqn. (34), 
welfare with the TPS is 

EWc¼A2
�

℘bB

2ðbB þ dÞ2
þ

1 � ℘
2ðbG þ 2dÞ

�

:

Using eqn. (35), welfare with the fee is 

EWf *¼
A2

2

�
℘

bBþd þ
1� ℘
bGþd

�2

℘ðbBþ2dÞ
ðbBþdÞ2

þ
ð1� ℘ÞðbGþ2dÞ
ðbGþdÞ2

:

Suppose ℘ ¼ 0:5, d ¼ 0:5, and bG ¼ 1. Then EWf* <EWcif bB > 3:31. The TPS dominates when demand is so low on bad days that it is optimal to 
ignore bad days and support the FBO on good days. 

A.8 Volatility of the full price of usage (Section 5.4) 

A.8.1 Fee regime 
The full price of usage is pf ¼ a � bNf with Nf ¼ ðA � fÞ=ðb þ dÞ. Substituting for f using eqn. (27) gives pf ¼ ðda þ bc þ bdA =ðb þ 2dÞÞ= ðb þ dÞ, 

which has a variance 
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Var
�
pf �¼

d2⋅VarðaÞ þ b2⋅VarðcÞ þ 2bd⋅Covða; cÞ
ðbþ dÞ2

: (A.11)  

A.8.2 TPS regime when permit constraint always binds 
The full price of usage is pc ¼ a � bYwith Y ¼ A=ðb þ 2dÞfrom eqn. (29). Hence pc ¼ a � bA=ðb þ 2dÞwhich has a variance 

VarðpcÞ¼VarðaÞ: (A.12) 

Given (A.11) and (A.12), 

VarðpcÞ � Var
�
pf �¼

s
ðbþ 2dÞ ⋅ VarðaÞ � b ⋅ VarðcÞ � 2d⋅Covða; cÞ:

A.9 Rankings of states with variable costs (Section 6.1) 

This appendix examines when Assumption 2 holds with no restrictions on the demand curve. Consider any pair of states, and call them good (G) 
and bad (B). FBO usage levels are determined by the respective conditions 

p
�
No

G

�
¼CG

�
No

G

�
þ CG’

�
No

G

�
No

G; (A.13)  

p
�
No

B

�
¼CB

�
No

B

�
þ CB’

�
No

B

�
No

B: (A.14) 

FBO fees are fo
G ¼ CG’ðNo

GÞN
o
Gand f o

B ¼ CB’ðNo
BÞN

o
B. 

Suppose the cost function in state ω 2 fG;Bghas the form 

CωðNÞ¼ cþ dωNε; (A.15)  

where c � 0and ε > 0. Eqn. (A.13) and (A.14) become 

p
�
No

G

�
¼ cþ ð1þ εÞdG

�
No

G

�ε
;

p
�
No

B

�
¼ cþ ð1þ εÞdB

�
No

B

�ε
:

Assumption 2(a) requires dB > dG. It then follows that No
B < No

G, pðNo
BÞ > pðNo

GÞ, and f o
B ¼ εdBðNo

BÞ
ε
> f o

G ¼ εdGðNo
GÞ

ε. Assumption 2(b) is therefore 
satisfied as well. Note that the cost function does not have to be convex since parameter ε can be less than 1. 

We now return to general cost functions and identify two necessary conditions for Assumption 2 to hold. 
Condition 1 The cost function must be steeper in less favorable states. With two states, G and B, the requisite condition is CB’ðNÞ � CG’ðNÞfor all N > 0. 
To see that Condition 1 must hold, note that if the demand curve is nearly vertical then No

B ffiNo
Gand the condition fo

B � fo
Gsimplifies to CB’ðNÞ �

CG’ðNÞ. 
Condition 2 Congestion-free costs must be the same in all states. 

To see this, consider a linear variant of eqn. (A.15): 

CGðNÞ¼ cGþ dGN; ​ ​ CBðNÞ¼ cB þ dBN; ​  

with dB > dG. Assumption 2(a) requires cB � cG. Suppose the demand curve is horizontal with a choke price of p. First-best fees are 

f o
G¼

p � cG

2
; ​ f o

B ¼
p � cB

2
:

Assumption 2(b) requires fo
B �fo

G, which implies cB � cG. Hence cB ¼ cG. 

A.10 Proof of Theorem 5 (Section 6.1) 

We first prove Theorem 5 for cases in which the permit constraint binds in all states. We then show that the same reasoning applies if the constraint 
does not bind in some states. To facilitate the proof, we assume that the number of states is countable and finite. A similar proof applies if Ωis 
continuous. 

List states from worst to best as per Assumption 2 so that for any states ω and ωþ 1, No
ωþ1 > No

ωand fo
ωþ1 <fo

ω. Let k be the unique state such that Y 2
½No

k;N
o
kþ1�. 

Lemma 1. There exists a fee that is welfare-superior to the TPS for states k and kþ 1. 

Proof of lemma: Let f be the fee. Clearly, f 2 ½fo
kþ1;f

o
k�. A value of f within this interval that is welfare-superior to the TPS can be found by trial and 

error as follows. First set f ¼ fo
k. Since fo

kþ1 <fo
k, Nkþ1ðfÞ < No

kþ1. If Nkþ1ðfÞ � Ythen Nkþ1ðfÞ 2 ½Y;No
kþ1Þ. The fee supports the FBO in state k, and an 

outcome equal to or better than the TPS in state kþ 1. Suppose instead that Nkþ1ðfÞ � Y. Reduce f until Nkþ1ðfÞ ¼ Y. In state kþ 1the fee supports the 
same outcome as the TPS. Since CkðNÞ > Ckþ1ðNÞfor any N > 0, NkðfÞ <Nkþ1ðfÞ. Moreover, since f < fo

k, NkðfÞ > No
k. Hence NkðfÞ 2 ðNo

k;YÞ, and in state 
k the fee supports an outcome closer to the optimum than the TPS. Thus, the fee is welfare-superior to the TPS in both states k and kþ 1. ■ 

For the rest of the proof of Theorem 5 the fee is held fixed at the f identified in Lemma 1. Consider any state j < k. Given CjðNÞ > CkðNÞ, NjðfÞ <
NkðfÞ � Yso that NjðfÞ < Y. Given f � fo

k < fo
j , NjðfÞ > No

j . Hence NjðfÞ 2 ðNo
j ;YÞ, and usage in state j is closer to the FBO than with the TPS. 
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Now consider any state j > kþ 1. Given CjðNÞ > Ckþ1ðNÞ, NjðfÞ > Nkþ1ðfÞ � Yso that NjðfÞ > Y. With f > fo
j , NjðfÞ < No

j . Hence NjðfÞ 2 ðY;No
j Þand 

usage in state j is closer to the FBO than with the TPS. In conclusion, the fee is at least as efficient as the TPS in every state, and strictly superior in at 
least some states. 

As a final step, suppose the TPS does not bind in all states. Since the unregulated usage level is strictly increasing with the state as per Assumption 2, 
it must not bind in states 1:::jfor some j � 1. The fee is set in the same way as when the permit binds in all states so that f 2 ½fo

kþ1; f
o
k�for some state k. 

Usage in states k and higher is welfare-superior with the fee as before. Since j � k, f � fo
j . The fee therefore reduces usage in states 1:::jpart way toward 

their respective FBO values No
1…No

j , and thus improves efficiency in these states. By contrast, the TPS does not improve efficiency in states 1:::jat all. 
Thus, the fee is again at least as efficient as the TPS in every state, and strictly superior in at least some states. ■ 

A.11 Analytics of the adaptive tradable permit scheme (Section 7) 

Let Ωcdenote the set of states in which the initial permit allocation prevails and the government neither buys nor sells permits. Let Ωrdenote the set 
of states in which the government buys permits, and Ωsthe set of states in which it sells permits. Usage in the three intervals is governed by the 
equations 

pωðNωÞ¼CωðNωÞþ r; ​ ​ ω 2 Ωr;

Nω¼ Y; ​ ​ ω 2 Ωc;

pωðNωÞ¼CωðNωÞþ s; ​ ​ ω 2 Ωs:

With the linear model, 

Nω¼
1

bþ d
ðA � rÞ; ​ ​ ω 2 Ωr;

Nω¼
1

bþ d
ðA � qÞ¼ Y; ​ ​ ω 2 Ωc; (A.16)  

Nω¼
1

bþ d
ðA � sÞ; ​ ​ ω 2 Ωs:

Parameters Y, r, and s are chosen to maximize expected welfare in (11). The optimal permit allocation is 

Y ¼
Ac

bþ 2d
; (A.17)  

where Acis the mean value of A for ω 2 Ωc. The first-order conditions for r and s are 

r� ¼
Eω2Ωr

�

Cω’ðNωÞNω
∂Nω
∂r

�

Eω2Ωr

�
∂Nω
∂r

� ; (A.18)  

s� ¼
Eω2Ωs

�

Cω’ðNωÞNω
∂Nω
∂s

�

Eω2Ωs

�
∂Nω
∂s

� : (A.19)  

Eqns. (A.18) and (A.19) have the same structure as eqn. (13) for the optimal fee. 
Assume now that variable A � a � cis uniformly distributed on the interval ½A0;A1�. Eqn. (A.18) and (A.19) simplify to 

r� ¼
d

bþ 2d
Ar ; (A.20)  

s� ¼
d

bþ 2d
As: (A.21) 

Let Arcand Acsdenote the boundaries between sets Ωr, Ωc, and Ωsso that Ωr ¼ ½A0;ArcÞ, Ωc ¼ ½Arc;Acs�, and Ωs ¼ ðAcs;A1�. Then Ar ¼ ðA0 þ ArcÞ= 2, 
Ac ¼ ðArc þ AcsÞ=2, and As ¼ ðAcs þ A1Þ=2. 

Setting NjA¼Arc
¼ Yand using (A.16), (A.17), and (A.20) yields 

ðbþ 2dÞArc¼ dA0 þ ðbþ dÞAcs: (A.22)  

Setting NjA¼Acs
¼ Yand using (A.16), (A.17), and (A.21) yields 

ðbþ 2dÞAcs¼ dA1 þ ðbþ dÞArc: (A.23)  

The solution to (A.22) and (A.23) is 
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Arc ¼
ðbþ 2dÞA0 þ ðbþ dÞA1

2bþ 3d
;

Acs ¼
ðbþ dÞA0 þ ðbþ 2dÞA1

2bþ 3d
:

Substituting these formulas into eqn. (A.20) and (A.21) gives 

r� ¼
dðð3bþ 5dÞA0 þ ðbþ dÞA1Þ

2ðbþ 2dÞð2bþ 3dÞ
;

s� ¼
dððbþ dÞA0 þ ð3bþ 5dÞA1Þ

2ðbþ 2dÞð2bþ 3dÞ
:

Note that in the limit A1→A0, r� ¼ s� ¼ dA0=ðb þ 2dÞwhich is eqn. (27) for the optimal fee, f�. 
The probabilities of the three states are 

℘ðΩrÞ¼
bþ d

2bþ 3d
; ​ ℘ðΩcÞ¼

d
2bþ 3d

; ​ ℘ðΩsÞ¼
bþ d

2bþ 3d
:

The government is equally likely to buy as sell permits, and trading in either direction is more frequent than not trading. 
Routine algebra yields eqn. (43) for the relative efficiency of the adaptive TPS. The relative efficiencies of the fee and the basic TPS are readily 

derived using eqns. (28) and (30), respectively. 
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GlossaryLatin characters 

a, b, c, d, e, g, r :: parameters of cost functions 
CðNÞ :: user cost function 
Cωð:Þ :: user cost function in state ω 
Dωð:Þ :: damage function in state ω 
Eω :: expectations operator 
f :: usage fee 
MEC :: marginal external cost 
MSC :: marginal social cost 
N:: total usage 
pðNÞ :: willingness to pay for usage 
℘ω :: probability of state ω, ω 2 Ω 
q :: price of one permit 
Rωð:Þ :: environmental cost function in state ω 
t:: date of usage 
U:: average usage 
W :: social surplus or welfare 
Y :: total number of permits distributedRegimes (denoted by superscripts) 
c :: permit (or credit) 
f :: fee 
i :: index of regimes 
n :: unregulated 
o :: first-best optimumGreek characters 
ω:: a particular state, with ω 2 Ω 
Ω :: set of possible states 
ΩC :: set of states in which permit constraint binds 
ΩN :: set of states in which permit constraint does not bind 
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